Skip to main content
Log in

Amphibolites from the Szklarska Poręba hornfels belt, West Sudetes, SW Poland: magma genesis and implications for the break-up of Gondwana

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Amphibolites from the Szklarska Poręba hornfels belt (northern part of the Karkonosze-Izera Massif) represent rocks of alkali-basalt composition metamorphosed during Variscan times. Despite the intense thermal influence of the Karkonosze granite superimposed on the effects of regional amphibolite-facies metamorphism, the geochemical affinities of the Szklarska Poręba amphibolites are well preserved. They are similar to alkaline OIB basalts derived from an enriched (undepleted) sub-lithospheric source in the garnet stability field at depths ca 80–120 km. Trace-element characteristics and geochemical modelling indicate that the source was not modified by metasomatism in a supra-subduction zone or by alkali (silicate, carbonatitic) infiltration. Subsequent intra-crustal fractional crystallization involved olivine and clinopyroxene, and subordinate spinel and, presumably, plagioclase. The chemical composition of the rocks is most similar to that of modern magmas generated in an extensional setting (intra-continental rift). Neither geochemical characteristics nor estimated mantle temperatures only slightly higher than those of ambient mantle convincingly attest to the involvement of deep-mantle plume activity. Instead, decompression melting of passively upwelling asthenosphere beneath opening fractures in fragmented lithosphere is invoked. The origin of the amphibolite protolith was presumably associated with the Early Palaeozoic rifting of northern Gondwana, well documented throughout the Karkonosze-Izera massif. Locally rifting must have ceased earlier (immature rift) as reflected by mafic dykes exposed in the northern part of the massif, i.e., in the Szklarska Poręba hornfelses, and by the Izera gneisses and the Stara Kamienica metapelites. A passive rift system controlled by lithosphere extension provides a plausible explanation for the origin of mafic rocks in the Karkonosze-Izera Massif and sheds light on possible mechanisms involved in the break-up of Gondwana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aldanmaz E, Köprübaşi N, Gürer ÖF, Kaymakçi N, Gourgaud A (2006) Geochemical constraints of the Cenozoic, OIB-type alkaline volcanics rocks of NW Turkey: implications for mantle sources and melting processes. Lithos 86:50–76

    Google Scholar 

  • Aleksandrowski P, Mazur S (2002) Collage tectonics in the easternmost part of the Variscan Belt: the Sudetes, Bohemian Massif. In: Winchester JA, Pharaoh TC, Verniers J (eds.): Palaeozoic Amalgamation of Central Europe. Geol Soc London Spec Publ 201:237–277

    Google Scholar 

  • Allegre CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett 38:1–25

    Google Scholar 

  • Anderson DL (1995) Lithosphere, asthenosphere, and perisphere. Rev Geophys 33:125–149

    Google Scholar 

  • Anderson DL (2000) The thermal state of the upper mantle: no role for mantle plumes. Geophys Res Lett 27:3623–3626

    Google Scholar 

  • Bendl J, Patočka F (1995) The Rb-Sr isotope geochemistry of the metamorphosed bimodal volcanic association of the Rýchory Mts crystalline Complex, West Sudetes, Bohemian Massif. Geol Sudet 29:3–18

    Google Scholar 

  • Borkowska M, Hameurt J, Vidal P (1980) Origin and age of Izera gneisses and Rumburk granites in the Western Sudetes. Acta Geol Polon 30:121–146

    Google Scholar 

  • Cabanis B, Lecolle M (1989) Le diagramme La/10-Y/15-Nb: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de mélange et/ou de contamination crustale. CR Acad Sci Ser II 309:2023–2029

    Google Scholar 

  • Chaloupský J et al. (1989) Geologie of the Krknoše and the Jizerské hory Mts. [In Czech, with English abstract]. Ústr úst geol Praha

  • Campbell IH (1985) The difference between oceanic and continental tholeiites. A fluid dynamic explanation. Contrib Mineral Petrol 91:37–43

    Google Scholar 

  • Chab J, Vrana S (1979) Crossite-actinolite amphiboles of the Krkonoše-Jizera crystalline Complex and their geological significance. Ústr úst geol Praha 54:143–150

    Google Scholar 

  • Cieśliński N, Żaba J (1990) Structural position of the Variscan vein rocks in the northern contact zone of the Karkonosze massif in the vicinity of Szklarska Poręba (Western Sudetes). Geol Sudet 25:59–81 [in Polish, with English abstract]

    Google Scholar 

  • Courtillot V, Davaille A, Besse J, Stock J (2003) Three distinct types of hotspots in the Earth’s mantle. Earth Planet Sci Lett 205:295–308

    Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. Allen and Unwin, London

    Google Scholar 

  • Crowley QG, Floyd PA, Winchester JA, Franke W, Holland JG (2000) Early Palaeozoic rift-related magmatism in Variscan Europe: fragmentation of the Armorican Terrane Assemblage. Terra Nova 12:171–180

    Google Scholar 

  • Dupuy C, Liotard JM, Dostal J (1992) Zr-Hf fractionation in intraplate basaltic rocks: carbonate metasomatism in the mantle source. Geochim Cosmochim Acta 56:2417–2423

    Google Scholar 

  • Ebinger C (2005) Continental break-up: the East African perspective. Astron Geoph 46:2.16–2.21

    Google Scholar 

  • Ellam RM (1992) Lithospheric thickness as a control on basalt geochemistry: Geology 20:153–156

    Google Scholar 

  • Escuder Viruete J, Pérez-Estaún A, Weis D (2009) Geochemical constraints on the origin of the late Jurassic proto-Caribbean oceanic crust in Hispaniola. Int J Earth Sci 98:407–425

    Google Scholar 

  • Fitton JG (2007) The OIB paradox. In: Foulger GR, Jurdy DM (eds) Plates, plumes and planetary processes. Geol Soc Amer Spec Pap 430:387–412

    Google Scholar 

  • Fitton JG, Godard M (2004) Origin and evolution of magmas on the OJP. In: Fitton JG, Mahoney JJ, Wallace PJ, Saunders AD (eds) Origin and evolution of the OJP. Geol Soc London Spec Publ 229:151–178

    Google Scholar 

  • Fitton JG, Saunders AD, Norry MJ, Hardarson BS, Taylor RN (1997) Thermal and chemical structure of the Iceland plume. Earth Planet Sci Lett 153:197–208

    Google Scholar 

  • Floyd PA, Winchester JA, Seston R, Kryza R, Crowley QG (2000) Review of geochemical variation in Lower Palaeozoic metabasites from the NE Bohemian Massif: intracratonic rifting and plume-ridge interaction. In: Franke W, Haack V, Oncken O, Tanner D (eds) Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geological Society of London Special Publication 179:155–174

  • Franke W, Żelaźniewicz A (2002) Structure and evolution of the Bohemian Arc. In: Winchester JA, Pharaoh TC, Verniers J (eds.): Palaeozoic Amalgamation of Central Europe. Geol Soc London Spec Publ 201:279–293

    Google Scholar 

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from SE Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513

    Google Scholar 

  • Fukao Y, Obayashi M, Nakakuki T, The Deep Slab Project Group (2009) Stagnant slab: a review. Ann Rev Earth Planet Sci 37:19–46

    Google Scholar 

  • Gaetani GA, Asimow PD, Stolper EM (2008) A model for rutile saturation in silicate melts with applications to eclogite partial melting in subduction zones and mantle plumes. Earth Planet Sci Lett 272:720–729

    Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Google Scholar 

  • Gurenko AA, Sobolev AV, Hoernle KA, Hauff F, Schmincke HU (2009) Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: A mixed-up mantle. Earth Planet Sci Lett 277:514–524

    Google Scholar 

  • Halliday AN, Lee DC, Tommasini S, Davies GR, Paslick CR, Fitton JG, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133:379–395

    Google Scholar 

  • Hart WK, Wolde GC, Walter RC, Mertzman SA (1989) Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions. J Geophys Res 94:7731–7748

    Google Scholar 

  • Hastie AR, Kerr AC (2010) Mantle plume or slab window?: Physical and geochemical constraints on the origin of the Caribbean oceanic plateau. Earth Sci Rev 98:283–293

    Google Scholar 

  • Hawkesworth C, Scherstén A (2007) Mantle plumes and geochemistry. Chem Geol 241:319–331

    Google Scholar 

  • Herzberg C (2006) Distribution and size of pyroxenite bodies in the mantle. EOS Trans Amer Geophys Union 746:Fall Meeting Supplement, Abstract U12A-04

  • Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem Geophys Geosys 9:Q09001. doi:10.1029/2008GC002057

    Google Scholar 

  • Hladil J, Patočka F, Kachlík V, Melichar R, Hubačík M (2003) Metamorphosed carbonate sediments of the Krkonose Mts and Paleozoic evolution of Sudetic terranes (NE Bohemia, Czech Republic). Geol Carpath 54:281–297

    Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436

    Google Scholar 

  • Holm PE (1985) The geochemical fingerprints of different tectonomagmatic environments using hygromagmatophile element abundances of tholeiitic basalts and basaltic andesites. Chem Geol 51:303–323

    Google Scholar 

  • Huppert HE, Sparks RSJ (1985) Cooling and contamination of mafic and ultramafic magmas during ascent through continental crust. Earth Planet Sci Lett 74:371–386

    Google Scholar 

  • Ilnicki S (2002a) Composition of amphibole and plagioclase in amphibolites from northern contact zone of the Karkonosze granite: a preliminary report. Pol Tow Miner Prace Spec 20:103–105

    Google Scholar 

  • Ilnicki S (2002b) Amphibolites and metabasites from the Izera Block, West Sudetes. Pol Tow Miner Prace Spec 20:262–269

    Google Scholar 

  • Ilnicki S (2010) Petrogenesis of continental mafic dykes from the Izera Complex, Karkonosze-Izera Block (West Sudetes, SW Poland). Int J Earth Sci 99:745–773

    Google Scholar 

  • Ilnicki S (2011) Variscan prograde and contact metamorphism in metabasites from the Sowia Dolina, Karkonosze-Izera massif (SW Poland). Min Mag 75:185–212

    Google Scholar 

  • Iwansson K, Landström O (2000) Contamination of rock samples by laboratory grinding mills. J Radioanal Nuclear Chem 244:609–614

    Google Scholar 

  • Kellogg LH, Bradford H, Hager BH, van der Hilst RD (1999) Compositional Stratification in the Deep Mantle. Science 283:1881–1884

    Google Scholar 

  • Keskin M, Pearce JA, Mitchell JG (1998) Volcano-stratigraphy and geochemistry of collision-related volcanism of the Erzurum-Kars Plateau, North Eastern Turkey. J Volcan Geotherm Res 85:355–404

    Google Scholar 

  • Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 2. Applications. J Geophys Res 97:6907–6926

    Google Scholar 

  • Knoper MW, Condie KC (1988) Geochemistry and petrogenesis of Early Proterozoic amphibolites, West-Central Colorado, USA. Chem Geol 67:209–225

    Google Scholar 

  • Kozdrój W, Cymerman Z, Kachlík V, Opletal M (2001) Karkonosze-Izera Region. In: Kozdrój W, Krentz O, Opletal M (eds) Comments on the Geological map Lauzitz–Jizera–Karkonozse (without Cenozoic sediments). pp, Sächsisches Landesamt für Umwelt und Geologie/Bereich Boden und Geologie, pp 22–27

    Google Scholar 

  • Krienitz M-S, Haase KM, Mezger K, Eckardt V, Shaikh-Mashail MA (2006) Magma genesis and crustal contamination of continental intraplate lavas in northwestern Syria. Contrib Mineral Petrol 151:698–716

    Google Scholar 

  • Kröner A, Jaeckel P, Hegner E, Opletal M (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše and Orlice-Snieżnik Complex). Int J Earth Sci 90:304–324

    Google Scholar 

  • Kryza R, Mazur S (1995) Contrasting metamorphic paths in the SE part of the Karkonosze-Izera Block (Western Sudetes, SW Poland). N Jb Mineral Abh 169:157–192

    Google Scholar 

  • Kryza R, Mazur S, Pin C (1995) The Leszczyniec meta-igneous Complex in the eastern part of the Karkonosze-Izera Block, Western Sudetes: trace element and Nd isotope study. N Jb Mineral Abh 170:59–74

    Google Scholar 

  • Kryza R, Mazur S, Aleksandrowski P, Zalasiewicz J, Sergeev S, Presnyakov S (2007) Ordovician initial-rift volcanism in the Central European Variscides (the Kaczawa Mountains, Sudetes, SW Poland): evidence from SHRIMP dating of zircons. J Geol Soc London 164:1207–1215

    Google Scholar 

  • La Fleche MR, Camire G, Jenner GA (1998) Geochemistry of post-Acadian, Carboniferous continental intraplate basalts from the Maritimes Basin, Magdalen Islands, Quebec, Canada. Chem Geol 148:115–136

    Google Scholar 

  • Le Bas MJ, Le Maitre TW, Woolley AR (1992) The construction of the total alkali-silica chemical classification of volcanic rocks. Miner Petrol 48:1–22

    Google Scholar 

  • Leat PT, Thompson RN, Morrison MA, Hendry GL, Dickin AP (1988) Compositionally-diverse Miocene-Recent rift related magmatism in northwest Colorado: partial melting, and mixing of mafic magmas from 3 different asthenospheric and lithospheric mantle sources. In: Cox KG, Menzies MA (eds), Oceanic and continental lithosphere: similarities and differences. J Petrol Spec Vol 331–349

  • Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): Did Armorica ever leave pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence and the Nd-isotopic record: Int J Earth Sci 93:683–705

    Google Scholar 

  • Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008) The Cadomian orogney and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U-Pb zircon dating (Ossa-Morena and Saxo-Thuringian zones, Iberian and Bohemian massifs). Tectonophysics 461:21–43

    Google Scholar 

  • Mazur S, Aleksandrowski P (2001) The Teplá(?)/Saxothuringian suture in the Karkonosze-Izera massif, Western Sudetes, Central European Variscides. Int J Earth Sci 90:341–360

    Google Scholar 

  • Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Variscan Orogen in Poland. Geol Q 50:89–118

    Google Scholar 

  • Mazur S, Aleksandrowski P, Turniak K, Awdankiewicz M (2007) Geology, tectonic evolution and Late Palaeozoic magmatism of Sudetes–an overview. In: Kozłowski A, Wiszniewska J (Eds.), Granitoids in Poland. Arch Miner Monograph 1:59–87

    Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679

    Google Scholar 

  • McKenzie DP, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Google Scholar 

  • McKenzie DP, O’nions RK (1995) The source regions of ocean island basalts. J Petrol 36:133–159

    Google Scholar 

  • Menzies MA, Kempton PD, Dungan MA (1985) Interaction of continental lithosphere and asthenospheric melts below the Geronimo volcanic field, Arizona, USA. J Petrol 26:663–693

    Google Scholar 

  • Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol 56:207–218

    Google Scholar 

  • Mierzejewski M, Oberc-Dziedzic T (1990) The Izera-Karkonosze Block and its tectonic development (Sudetes, Poland). N Jb Mineral Abh 179:197–222

    Google Scholar 

  • Nance RD, Linnemann U (2008) The Rheic Ocean: origin, evolution and significance. GSA Today 18:4–12

    Google Scholar 

  • Nielsen R (2010) GERM partition coefficient (Kd) database. http://earthref.org/GERM/index.html

  • Oberc-Dziedzic T, Pin C, Kryza R (2005) Early Palaeozoic crustal melting in an extensional setting: petrological and Sm-Nd evidence from the Izera granite-gneisses, Polish Sudetes. Int J Earth Sci 94:354–368

    Google Scholar 

  • Oberc-Dziedzic T, Kryza R, Pin C, Mochnacka K, Larionov A (2009) The orthogneiss and schist complex of the Karkonosze-Izera massif (Sudetes, SW Poland): U-Pb SHRIMP zircon ages, Nd-isotope systematics and protoliths. Geol Sudet 41:3–24

    Google Scholar 

  • Oberc-Dziedzic T, Kryza R, Mochnacka K, Larionov A (2010) Ordovician passive continental margin magmatism in the Central-European Variscides: U–Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland. Int J Earth Sci 99:27–46

    Google Scholar 

  • Oliver G, Corfu F, Krogh T (1993) U-Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. J Geol Soc London 150:355–369

    Google Scholar 

  • Patočka F, Smulikowski W (2000) Early Palaeozoic intracontinental rifting and incipient oceanic spreading in the Czech/Polish East Krkonoše/Karkonosze Complex, West Sudetes (NE Bohemian Massif). Geol Sudet 33:1–15

    Google Scholar 

  • Patočka F, Fajst M, Kachlík V (2000) Mafic-felsic to mafic-ultramafic Early Palaeozoic magmatism of the West Sudetes (NE Bohemian Massif): the South Krkonoše Complex. Z Geol Wiss 28:177–210

    Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R (ed) Andesites: orogenic andesites and related rocks. Wiley, Chichester, pp 525–548

    Google Scholar 

  • Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48

    Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet Sci Lett 19:290–300

    Google Scholar 

  • Pearce JA, Norry M (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Miner Petrol 69:33–47

    Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Ann Rev Earth Planet Sci 23:251–285

    Google Scholar 

  • Pin C, Marini F (1993) Early Ordovician continental break-up in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos 29:177–196

    Google Scholar 

  • Pin C, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhausrova J (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. In: Linnemann U, Kraft P, Nance D, Zulauf G (eds) The Geology of Peri-Gondwana: Avalonian-Cadomian terranes, adjoining cratons, and the Rheic Ocean, vol 423. Geological Society of America Special Publication, Boulder, pp 209–230

    Google Scholar 

  • Prytulak J, Elliott T (2007) TiO2 enrichment in ocean island basalts. Earth Planet Sci Lett 263:388–403

    Google Scholar 

  • Putirka KD, Perfit M, Ryerson FJ, Jackson MG (2007) Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem Geol 241:177–206

    Google Scholar 

  • Robinson JA, Wood BJ (1998) The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet Sci Lett 164:277–284

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise on Geochemistry 3:1–64

    Google Scholar 

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    Google Scholar 

  • Rudnick RL, Barth MG, Horn I, McDonough WF (2000) Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287:278–281

    Google Scholar 

  • Sears JW, George GMS, Winne JC (2005) Continental rift systems and anorogenic magmatism. Lithos 80:147–154

    Google Scholar 

  • Seston R, Winchester JA, Piasecki MAJ, Crowley QF, Floyd PA (2000) A structural model for the western-central Sudetes: a deformed stack of Variscan thrust sheets J Geol Soc London 157:1155–1167

    Google Scholar 

  • Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Google Scholar 

  • Shervais JW (1982) Ti-V plots and petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118

    Google Scholar 

  • Smith AD (2009) The fate of subducted oceanic crust and the origin of intraplate volcanism. In: Anderson JE, Coates RW (eds) The lithosphere. Geochem Geol Geophys. 123–140

  • Späth A, le Roex AP, Opiyo-Akech N (2001) Plume-lithosphere interaction and the origin of continental rift-related alkaline volcanism—the Chyulu Hills volcanic province, southern Kenya. J Petrol 42:765–787

    Google Scholar 

  • Staudigel H, Plank T, White B, Schmincke HC (1996) Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP sites 417 and 418. Geophysical Monograph 96:19–38

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositon and processes. In: Saunders AD, Norry MJ (eds): Magmatism in ocean basins. Geol Soc London Spec Publ 42:313–345

    Google Scholar 

  • Sun SS, Nesbitt RW (1978) Petrogenesis of Archean ultrabasic and basic volcanics: evidence from rare earth elements. Contrib Mineral Petrol 65:301–325

    Google Scholar 

  • Tait J, Bachtadse V, Franke W, Soffel H (1997) Geodynamic evolution of the European Variscan fold belt: palaeomagnetic and geological constraints. Geol Rundsch 86:585–598

    Google Scholar 

  • Thompson RN, Morrison MA (1988) Asthenospheric and lower-lithospheric mantle contributions to continental extensional magmatism: an example from the British tertiary province. Chem Geol 68:1–15

    Google Scholar 

  • Timmermann H, Parrish RH, Noble SR, Kryza R, Patočka F (1999) Single cycle Variscan orogeny inferred from new U-(Th)-Pb data from the Sudetes mountains in Poland and the Czech Republic. Abstracts of the PACE mid-term review and 4th PACE network meeting. Geological Institute, University of Copenhagen, Denmark 24

  • Verma SP, Guevara M, Agrawal S (2006) Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. J Earth Sys Sci 115:485–528

    Google Scholar 

  • Watson S, McKenzie D (1991) Melt generation by plumes: a study of Hawaiian volcanism. J Petrol 32:501–537

    Google Scholar 

  • Weaver BL (1991) The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet Sci Lett 104:381–397

    Google Scholar 

  • White RS, McKenzie DP (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729

    Google Scholar 

  • Wilson M (1993) Igneous petrogenesis: a global tectonic approach. Chapman and Hall, London 466 p

    Google Scholar 

  • Winchester JA (1984) Element mobility associated with symetamorphic shear zones near Scotchport, NW Mayo, Ireland. J Metam Geol 2:1–11

    Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth Planet Sci Lett 28:459–469

    Google Scholar 

  • Winchester JA, PACE TMR Network Team (2002) Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophys 360:5–21

    Google Scholar 

  • Winchester JA, Floyd PA, Chocyk M, Horbowy K, Kozdrój W (1995) Geochemistry and tectonic environment of Ordovician meta-igneous rocks in the Rudawy Janowickie Complex, SW Poland. J Geol Soc London 152:105–115

    Google Scholar 

  • Wood DA (1980) The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crust contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet Sci Lett 50:11–30

    Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Google Scholar 

  • Żaba J (1985) Progressive regional metamorphism of the Izera Block, Western Sudetes (Poland). Acta Univer Carol Geol 1:63–88

    Google Scholar 

  • Żelaźniewicz A, Nowak I, Achramowicz S, Czapliński W (2003) The northern part of the Izera-Karkonosze Block: a passive margin of the Saxothuringian terrane. In: Ciężkowski A, Wojewoda J, Żelaźniewicz A (eds) Sudety Zachodnie: od wendu do czwartorzędu. WIND, Wrocław, pp 17–32 [In Polish, with English abstract]

    Google Scholar 

  • Żelaźniewicz A, Manning CM, Achramowicz S (2009) Refining the granite and schist interrelationships within Lusatian-Izera Massif, West Sudetes, using SHRIMP U-Pb zircon analyses and new geologic data. Geol Sudet 41:67–84

    Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571

    Google Scholar 

  • Zou HB, Zindler A (1996) Constraints on the degree of dynamic partial melting and source composition using concentration ratios in magmas. Geochim Cosmochim Acta 60:711–717

    Google Scholar 

Download references

Acknowledgments

The author thanks Wolf-Christian Dullo for editorial handling of the paper. Christian Pin, Jacek Puziewicz, Pádhraig Kennan, Ray Macdonald, Marlina Elburg and Andrzej Kozłowski are thanked for constructive reviews and helpful suggestions on the manuscript, and corrections of the English of the text. The study was financed by the University of Warsaw (grants no BSt-1726/15 and BW-1126/4). The support to the author from the German Academic Exchange Service (DAAD) scholarship is gratefully acknowledged. Rosemarie Baur (Mineralogical Institute, University of Würzburg, Germany) is thanked for XRF analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir Ilnicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilnicki, S. Amphibolites from the Szklarska Poręba hornfels belt, West Sudetes, SW Poland: magma genesis and implications for the break-up of Gondwana. Int J Earth Sci (Geol Rundsch) 101, 1253–1272 (2012). https://doi.org/10.1007/s00531-011-0727-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-011-0727-2

Keywords

Navigation