Skip to main content
Log in

Semi-classical standing waves for nonlinear Schrödinger systems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

For \(N \le 3\) and \(\beta > 0,\) we consider the following singularly perturbed elliptic system

$$\begin{aligned} \left\{ \begin{array}{rl} \varepsilon ^2\Delta u_1 - W_1(x)u_1 + \mu _1 (u_1)^3 +\beta u_1 (u_2)^2= 0,\ u_1 > 0 &{}\quad \text {in }\mathbf{R}^N,\\ \varepsilon ^2 \Delta u_2 - W_2(x)u_2 +\mu _2 (u_2)^3 +\beta u_2(u_1)^2 = 0,\ u_2 > 0 &{}\quad \text {in }\mathbf{R}^N.\\ \end{array} \right. \end{aligned}$$

There are an enormous number of results for localized solutions of singularly perturbed scalar problems using variational methods or finite dimensional reduction methods. However, there exist no general existence results of localized solutions for elliptic systems. We present some such results here. In the first, by a mini-max characterization for a limiting problem, for small \(\varepsilon > 0,\) we show the existence of one bump solutions with a common concentration point of \(u_1,u_2\) in a domain O when certain conditions for the limiting problem are satisfied. Typical examples of potentials \(W_1,W_2\) satisfying the condition are the following: (1) \(W_1,W_2\) have a common non-degenerate critical point in O which share the same stable, unstable directions; (2) for the outnormal n on \(\partial O\), \(\frac{\partial W_1}{\partial n} > 0, \frac{\partial W_2}{\partial n} > 0\) or \(\frac{\partial W_1}{\partial n} < 0, \frac{\partial W_2}{\partial n} < 0\) on \(\partial O;\) (3) \(\max _{x \in O}W_i(x) >> \max _{x \in \partial O}W_i(x)\) for \(i =1,2.\) We also give some nonexistence results for some potentials \(W_1,W_2\), not satisfying these conditions, but each \(W_1,W_2\) having a structurally stable critical point in O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almgren, F., Lieb, E.: Symmetric decreasing rearrangement is sometimes continuous. J. Am. Math. Soc. 2, 683–773 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartsch, T., Wang, Z.-Q.: Note on ground states of nonlinear Schrödinger systems. J. Partial Differ. Equ. 19, 200–207 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Bartsch, T., Wang, Z.-Q., Wei, J.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2, 353–367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bartsch, T., Dancer, N., Wang, Z.-Q.: A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system. Calc. Var. Partial Differ. Equ. 37, 345–361 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Busca, J., Sirakov, B.: Symmetry results for semilinear elliptic systems in the whole space. J. Differ. Equ. 163, 41–56 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185, 185–200 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Byeon, J., Tanaka, K.: Semi-classical standing waves for nonlinear Schrödinger equations at structurally stable critical points of the potential. J. Eur. Math. Soc. 15, 1859–1899 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Byeon, J., Tanaka, K.: Semiclassical standing waves with clustering peaks for nonlinear Schrödinger equations, vol. 229, no. 1076. Memoirs of the American Mathematical Society, Providence (2014)

  10. Coron, J.-M.: The continuity of the rearrangement in \(W^{1, p}(\mathbf{R})\). Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11, 57–85 (1984)

  11. del Pino, M., Felmer, P.: Semi-classical states for nonlinear Schrödinger equations: a variational reduction method. Math. Ann. 324, 1–32 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. de Figueiredo, D.G., Lopes, O.: Solitary waves for some nonlinear Schrödinger systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 149–161 (2008)

  13. Dancer, N., Wei, J.: Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction. Trans. Am. Math. Soc. 361, 1189–1208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dancer, N., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 953–969 (2010)

  15. del Pino, M., Kowalczyk, M., Wei, J.: Concentration on curves for nonlinear Schrödinger equations. Commun. Pure Appl. Math. 60, 113–146 (2007)

    Article  MATH  Google Scholar 

  16. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gui, C.: Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method. Comm. Partial Differ. Equ. 21, 787–820 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Grundlehren, vol. 224. Springer, Berlin (1983)

  20. Ikoma, N.: Uniqueness of positive solutions for a nonlinear elliptic system. Nonlinear Differ. Equ. Appl. 16(5), 555–567 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ikoma, N., Tanaka, K.: A local mountain pass type result for a system of nonlinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 40, 449–480 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kawohl, B.: Rearrangement and Convexity of Level Sets in PDE. Springer Lecture Notes in Mathematics, vol. 1150. Springer, Berlin (1985)

  23. Li, Y.Y.: On a singularly perturbed elliptic equation. Adv. Differ. Equ. 2, 955–980 (1997)

    MATH  Google Scholar 

  24. Lin, T.-C., Wei, J.: Ground state of N coupled nonlinear Schrödinger equations in \(\mathbf{R}^{N}, N \le 3\). Commun. Math. Phys. 255, 629–653 (2005)

  25. Lin, T.-C., Wei, J.: Erratum: Ground state of N coupled nonlinear Schrödinger equations in \(\mathbf{R}^{N}, N \le 3\). Commun. Math. Phys. 277, 573–576 (2008)

  26. Lin, T.-C., Wei, J.: Spikes in two coupled nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 403–439 (2005)

  27. Lin, T.-C., Wei, J.: Spikes in two-component systems of nonlinear Schrödinger equations with trapping potentials. J. Differ. Equ. 229, 538–569 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mitchell, M., Chen, Z., Shih, M., Segev, M.: Self-trapping of partially spatially incoherent light. Phys. Rev. Lett. 77, 490–493 (1996)

    Article  Google Scholar 

  29. Montefusco, E., Pellacci, B., Squassina, M.: Semiclassical states for weakly coupled nonlinear Schrödinger systems. J. Eur. Math. Soc. 10, 47–71 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Noris, B., Tavares, H., Terracini, S., Verzini, G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 63, 267–302 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Pomponio, A.: Coupled nonlinear Schrödinger systems with potentials. J. Differ. Equ. 227, 258–281 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Application to Differential Equations.CBMS Regional Conference Series Mathematics, vol. 65. AMS, Providence (1986)

  33. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \(\mathbf{R}^{N}\). Commun. Math. Phys. 271, 199–221 (2007)

  34. Segev, M., Christodoulides, D.: Incoherent solitons: self trapping of weakly correlated wave packets. Opt. Photonics News 13, 70–76 (2002)

    Article  Google Scholar 

  35. Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

    Article  MATH  Google Scholar 

  36. Wei, J., Yao, W.: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 11, 1003–1011 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to express his deep gratitude to Kazunaga Tanaka for sharing many wonderful discussions and ideas till the completion of this work, and thanks a referee of the paper for his or her careful reading and nice comments on the paper. This research of the author was supported by Mid-career Researcher Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (NRF-2013R1A2A2A05006371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeyoung Byeon.

Additional information

Communicated by P. Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byeon, J. Semi-classical standing waves for nonlinear Schrödinger systems. Calc. Var. 54, 2287–2340 (2015). https://doi.org/10.1007/s00526-015-0866-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0866-6

Mathematics Subject Classification

Navigation