Skip to main content
Log in

Weighted quasilinear eigenvalue problems in exterior domains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the following weighted eigenvalue problem in the exterior domain:

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta _pu = \lambda &{}K(x) |u|^{p-2}u \quad \mathrm{in} \quad {B_1^c},\\ u = 0 &{}\quad \mathrm{on}\quad \partial B_1, \end{array}\right. } \end{aligned}$$

where \(\Delta _p\) is the \(p\)-Laplace operator with \(p>1,\) and \({B_1^c}\) is the exterior of the closed unit ball in \(\mathbb {R}^N\) with \(N\ge 1.\) There is no restriction on the dimension \(N\) in terms of \(p,\) i.e., we allow both \(1< p< N\) and \(p\ge N\). The weight function \(K\) is locally integrable on \({B_1^c}\) and is allowed to change its sign. For some appropriate choice of \(w\), a positive weight function on the interval \((1,\infty )\), we prove that the Beppo-Levi space \({{\mathcal D}^{1,p}_0(B_1^c)}\) is compactly embedded into the weighted Lebesgue space \(L^p({B_1^c};w(|x|)).\) The existence of the positive eigenvalue for the above problem is proved for \(K\) such that supp\(K^+\) is of non-zero measure and \( |K| \le w\). Further, we discuss the positivity, the regularity and the asymptotic behaviour at infinity of the first eigenfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allegretto, W.: Principal eigenvalues for indefinite-weight elliptic problems in \({\mathbb{R}}^n\). Proc. Am. Math. Soc. 116(3), 701–706 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Allegretto, W., Huang, Y.X.: Eigenvalues of the indefinite-weight \(p\)-Laplacian in weighted spaces. Funkcial. Ekvac. 38(2), 233–242 (1995)

    MATH  MathSciNet  Google Scholar 

  3. Anoop, T.V.: Weighted eigenvalue problems for the \(p\)-Laplacian with weights in weak Lebesgue spaces. Electron. J. Differ. Equ. 64, 1–22 (2011)

    MathSciNet  Google Scholar 

  4. Anoop, T.V.: A note on generalized Hardy–Sobolev inequalities. Int. J. Anal. 2013, 1–9 (2013)

    Article  MathSciNet  Google Scholar 

  5. Anoop, T.V., Lucia, M., Ramaswamy, M.: Eigenvalue problems with weights in Lorentz spaces. Calc. Var. Partial Differ. Equ. 36(3), 355–376 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ávila, A.I., Brock, F.: Asymptotics at infinity of solutions for \(p\)-Laplace equations in exterior domains. Nonlinear Anal. 69(5–6), 1615–1628 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bidaut-Véron, M.-F., Pohozaev, S.: Nonexistence results and estimates for some nonlinear elliptic problems. J. Anal. Math. 84, 1–49 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brezis, H., Ponce, A.C.: Remarks on the strong maximum principle. Differ. Integral Equ. 16(1), 1–12 (2003)

    MATH  MathSciNet  Google Scholar 

  9. Brown, K.J., Cosner, C., Fleckinger, J.: Principal eigenvalues for problems with indefinite weight function on \({\mathbb{R}}^n\). Proc. Am. Math. Soc. 109(1), 14 –155 (1990)

  10. Catté, F., Lions, P.-L., Morel, J.-M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. DiBenedetto, E.: \(C^{1+\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. 7(8), 827–850 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Didier, S.: A concentration-compactness lemma with applications to singular eigenvalue problems. J. Funct. Anal. 167(2), 463–480 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Drábek, P.: Nonlinear eigenvalue problem for \(p\)-Laplacian in \({\mathbb{R}}^N\). Math. Nachr. 173, 131–139 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Edelson, A.L., Rumbos, A.J.: Linear and semilinear eigenvalue problems in \({\mathbb{R}}^n\). Comm. Partial Differ. Equ. 18(1–2), 215–240 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

  16. Huang, Y.X.: Eigenvalues of the \(p\)-Laplacian in \({\mathbb{R}}^N\) with indefinite weight. Comment. Math. Univ. Carolin. 36(3), 519–527 (1995)

    MATH  MathSciNet  Google Scholar 

  17. Kawohl, B., Lucia, M., Prashanth, S.: Simplicity of the principal eigenvalue for indefinite quasilinear problems. Adv. Differ. Equ. 12(4), 407–434 (2007)

    MATH  MathSciNet  Google Scholar 

  18. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12(11), 1203–1219 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lucia, M., Prashanth, S.: Simplicity of principal eigenvalue for \(p\)-Laplace operator with singular indefinite weight. Arch. Math. (Basel) 86(1), 79–89 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Manes, A., Micheletti, A.M.: Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 4(7), 285–301 (1973)

    MathSciNet  Google Scholar 

  21. Pélissier, M.C.: Étude d’un modèle mathématique d’écoulement de glacier. C. R. Acad. Sci. Paris Sér 279, 531–534 (1974)

    MATH  Google Scholar 

  22. Royden, H.L.: Real analysis. Macmillan Publishing Company, New York, third edition, (1988)

  23. Rozenblum, G., Solomyak, M.: On principal eigenvalues for indefinite problems in Euclidean space. Math. Nachr. 192, 205–223 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta Math. 111, 247–302 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  25. Showalter, R.E., Walkington, N.J.: Diffusion of fluid in a fissured medium with microstructure. SIAM J. Math. Anal. 22(6), 1702–1722 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  26. Szulkin, A., Willem, M.: Eigenvalue problems with indefinite weight. Studia Math. 135(2), 191–201 (1999)

    MATH  MathSciNet  Google Scholar 

  27. Tertikas, A.: Critical phenomena in linear elliptic problems. J. Funct. Anal. 154(1), 42–66 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Tintarev, K., Fieseler, K.-H.: Concentration compactness. Imperial College Press, London. Functional-analytic grounds and applications. (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Drábek.

Additional information

Communicated by P. Rabinowitz.

T. V. Anoop and S. Sasi were supported by the project EXLIZ - CZ.1.07/2.3.00/30.0013, which is co-financed by the European Social Fund and the state budget of the Czech Republic. P. Drábek was supported by the Grant Agency of Czech Republic, Project No. 13-00863S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anoop, T.V., Drábek, P. & Sasi, S. Weighted quasilinear eigenvalue problems in exterior domains. Calc. Var. 53, 961–975 (2015). https://doi.org/10.1007/s00526-014-0773-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0773-2

Mathematics Subject Classification

Navigation