Skip to main content
Log in

Abstract

This paper is devoted to the spectral analysis of the Laplacian with constant magnetic field on a cone of aperture \(\alpha \) and Neumann boundary condition. We analyze the influence of the orientation of the magnetic field. In particular, for any orientation of the magnetic field, we prove the existence of discrete spectrum below the essential spectrum in the limit \(\alpha \rightarrow 0\) and establish a full asymptotic expansion for the \(n\)-th eigenvalue and the \(n\)-th eigenfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For a given \(w\), we get an ellipse \(\mathcal {E}_{\delta _{\alpha ,\omega },R_{\alpha ,\omega }}\) which is subject to a magnetic field of intensity \(\sin \omega \), or equivalently (after dilation) an ellipse \(\mathcal {E}_{\delta _{\alpha ,\omega },R_{\alpha ,\omega }\sqrt{\sin \omega }}\) which is subject to a magnetic field of intensity 1.

References

  1. Agmon, S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of \(N\)-body Schrödinger Operators, vol. 29 of Mathematical Notes. Princeton University Press, Princeton (1982)

  2. Agmon, S.: Bounds on exponential decay of eigenfunctions of Schrödinger operators. In: Schrödinger Operators (Como, 1984), vol. 1159 of Lecture Notes in Math., pp. 1–38. Springer, Berlin (1985)

  3. Bonnaillie, V.: On the fundamental state energy for a Schrödinger operator with magnetic field in domains with corners. Asymptot. Anal. 41(3–4), 215–258 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Bonnaillie-Noël, V., Dauge, M.: Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners. Ann. Henri Poincaré 7(5), 899–931 (2006)

    Article  MATH  Google Scholar 

  5. Bonnaillie-Noël, V., Dauge, M., Popoff, N., Raymond, N.: Discrete spectrum of a model Schrödinger operator on the half-plane with Neumann conditions. Z. Angew. Math. Phys. 63(2), 203–231 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonnaillie-Noël, V., Dauge, M., Raymond, N.: Magnetic Schrödinger operators on conical domains with smal aperture. In preparation (2014)

  7. Bonnaillie-Noël, V., Fournais, S.: Superconductivity in domains with corners. Rev. Math. Phys. 19(6), 607–637 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bonnaillie-Noël, V., Raymond, N.: Peak power in the 3D magnetic Schrödinger equation. J. Funct. Anal. 265(8), 1579–1614 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics, study edn. Springer, Berlin (1987)

  10. Dauge, M.: Elliptic Boundary Value Problems on Corner Domains, vol. 1341 of Lecture Notes in Mathematics. Smoothness and Asymptotics of Solutions. Springer, Berlin (1988)

  11. Fournais, S., Helffer. B.: Spectral Methods in Surface Superconductivity. Progress in Nonlinear Differential Equations and their Applications, vol. 77. Birkhäuser Boston Inc., Boston (2010)

  12. Giorgi, T., Phillips, D.: The breakdown of superconductivity due to strong fields for the Ginzburg–Landau model. SIAM J. Math. Anal. 30(2), 341–359 (1999). (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  13. Helffer, B., Morame, A.: Magnetic bottles in connection with superconductivity. J. Funct. Anal. 185(2), 604–680 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Helffer, B., Pan, X.-B.: Upper critical field and location of surface nucleation of superconductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(1), 145–181 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Jadallah, H.T.: The onset of superconductivity in a domain with a corner. J. Math. Phys. 42(9), 4101–4121 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kondrat’ev, V.A.: Boundary-value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16, 227–313 (1967)

    MATH  Google Scholar 

  17. Lu, K., Pan, X.-B.: Estimates of the upper critical field for the Ginzburg–Landau equations of superconductivity. Phys. D 127(1–2), 73–104 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lu, K., Pan, X.-B.: Surface nucleation of superconductivity in 3-dimensions. J. Differ. Equ. 168(2) 386–452 (2000). Special issue in celebration of Jack K. Hale’s 70th birthday, Part 2 (Atlanta, GA/Lisbon, 1998)

  19. Pan, X.-B.: Upper critical field for superconductors with edges and corners. Calc. Var. Partial Differ. Equ. 14(4), 447–482 (2002)

    Article  MATH  Google Scholar 

  20. Pan, X.-B.: Surface superconductivity in 3 dimensions. Trans. Am. Math. Soc. 356(10), 3899–3937 (2004). (electronic)

    Article  MATH  Google Scholar 

  21. Persson, A.: Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math. Scand. 8, 143–153 (1960)

    MATH  MathSciNet  Google Scholar 

  22. Popoff, N.: Sur l’opérateur de Schrödinger magnétique dans un domaine diédral. (thèse de doctorat). Université de Rennes 1 (2012)

  23. Popoff, N.: The Schrödinger operator on an infinite wedge with a tangent magnetic field. J. Math. Phys. 54, 041507 (2013)

    Article  MathSciNet  Google Scholar 

  24. Raymond, N.: Semiclassical 3D Neumann Laplacian with variable magnetic field: a toy model. Comm. Partial Differ. Equ. 37(9), 1528–1552 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Raymond, N.: Breaking a magnetic zero locus: asymptotic analysis. Math. Models Methods Appl. Sci. (2013, to appear)

Download references

Acknowledgments

This work was partially supported by the ANR (Agence Nationale de la Recherche), Project Nosevol No. ANR-11-BS01-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Bonnaillie-Noël.

Additional information

Communicated by F. Helein.

Appendices

Appendix 1: Spherical magnetic coordinates

In dilated spherical coordinates \((t,\theta ,\varphi )\in \mathcal {P}\) such that

$$\begin{aligned} (x,y,z)=\Phi (t,\theta ,\varphi )=\alpha ^{-1/2}(t\cos \theta \sin \alpha \varphi ,\ t\sin \theta \sin \alpha \varphi ,\ t\cos \alpha \varphi ), \end{aligned}$$

the magnetic potential reads

$$\begin{aligned} \varvec{\mathsf {A}}(t,\theta ,\varphi )&= \frac{\alpha ^{-1/2}t}{2}( \cos \alpha \varphi \ \sin \beta -\sin \theta \ \sin \alpha \varphi \ \cos \beta , \cos \theta \ \sin \alpha \varphi \ \cos \beta ,\\&-\cos \theta \ \sin \alpha \varphi \ \sin \beta )^\mathsf{T}. \end{aligned}$$

The Jacobian matrix associated with \(\Phi \) is

$$\begin{aligned} D\Phi (t,\theta ,\varphi )=\alpha ^{-1/2}\begin{pmatrix} \cos \theta \sin \alpha \varphi &{}\quad -t\sin \theta \sin \alpha \varphi &{}\quad \alpha \ t\cos \theta \cos \alpha \varphi \\ \sin \theta \sin \alpha \varphi &{}\quad \cos \theta \sin \alpha \varphi &{}\quad \alpha \ t\sin \theta \cos \alpha \varphi \\ \cos \alpha \varphi &{}\quad 0&{}\quad -\alpha \ t\sin \alpha \varphi \end{pmatrix}. \end{aligned}$$

We can compute

$$\begin{aligned} (D\Phi )^{-1}(t,\theta ,\varphi )=\alpha ^{1/2}t^{-1}\begin{pmatrix} t\cos \theta \sin \alpha \varphi &{}\quad \sin \theta \sin \alpha \varphi &{}\quad \cos \alpha \varphi \\ -\sin \theta (\sin \alpha \varphi )^{-1}&{}\quad \cos \theta (\sin \alpha \varphi )^{-1}&{}\quad 0\\ \frac{1}{\alpha }\cos \theta \cos \alpha \varphi &{}\quad \frac{1}{\alpha }\sin \theta \cos \alpha \varphi &{}\quad -\frac{1}{\alpha }\sin \alpha \varphi \end{pmatrix}. \end{aligned}$$

Consequently, the metric becomes

$$\begin{aligned} G=(D\Phi )^{-1}\,{\ ^\mathsf{T}}(D\Phi )^{-1}=\alpha \begin{pmatrix} 1&{}\quad 0&{}\quad 0\\ 0&{}\quad ^{-2}(\sin \alpha \varphi )^{-2}&{}\quad 0\\ 0&{}\quad 0&{}\quad (\alpha t)^{-2} \end{pmatrix}. \end{aligned}$$

The change of variables leads to define the new magnetic potential

$$\begin{aligned} \tilde{\varvec{\mathsf {A}}}(t,\theta ,\varphi )&= {\ ^\mathsf{T}}D\Phi \ \varvec{\mathsf {A}}(t,\theta ,\varphi )\nonumber \\&= \alpha ^{-1}\frac{t^2}{2}\left( 0,\sin ^2\alpha \varphi \ \cos \beta -\cos \alpha \varphi \ \sin \alpha \varphi \ \sin \theta \ \sin \beta ,\cos \theta \ \sin \beta \right) \qquad \end{aligned}$$
(6.1)
$$\begin{aligned}&= \alpha ^{-1}\frac{t^2}{2}\left( 0,\sin ^2\alpha \varphi \ \cos \beta -\frac{1}{2}\sin 2\alpha \varphi \ \sin \theta \ \sin \beta ,\cos \theta \ \sin \beta \right) . \end{aligned}$$
(6.2)

Let \(\psi \) be a function in the form domain \(\mathrm{H}^1_{\varvec{\mathsf {A}}}(\mathcal {C}_{\alpha })\) of the Schrödinger operator \((-i\nabla +\varvec{\mathsf {A}})^2\) and \(\tilde{\psi }(t,\theta ,\varphi ) = \alpha ^{-1/4}\psi (x,y,z)\) (where \(\alpha ^{-1/4}\) is a normalization coefficient). The change of variables on the norm and quadratic form reads

$$\begin{aligned}&\!\!\!\Vert \psi \Vert ^2_{\mathrm{L}^2(\mathcal {C}_{\alpha })}=\int \limits _{\mathcal {P}}|\tilde{\psi }(t,\theta ,\varphi )|^2\, t^2\sin \alpha \varphi \, \mathrm{d}t \, \mathrm{d}\theta \, \mathrm{d}\varphi ,\\&\!\!\!\quad \int \limits _{\mathcal {C}_{\alpha }}\left| (-i\nabla +\varvec{\mathsf {A}})\psi (x,y,z)\right| ^2\, \mathrm{d}x\, \mathrm{d}y\, \mathrm{d}z\\&\!\!\!\quad =\int \limits _{\mathcal {P}} \langle G(-i\nabla _{t,\theta ,\varphi }+\tilde{\varvec{\mathsf {A}}})\tilde{\psi }, (-i\nabla _{t,\theta ,\varphi }+\tilde{\varvec{\mathsf {A}}})\tilde{\psi }\rangle \ t^2\sin \alpha \varphi \, \mathrm{d}t \, \mathrm{d}\theta \, \mathrm{d}\varphi \\&\!\!\!\quad = \alpha \int \limits _{\mathcal {P}} \Bigg (|\partial _{t}\tilde{\psi }|^2 +\frac{1}{t^2\sin ^2\alpha \varphi }\left| \left( -i\partial _{\theta }+\frac{t^2\sin ^2\alpha \varphi \ \cos \beta }{2\alpha }-\frac{t^2\sin 2\alpha \varphi \ \sin \theta \ \sin \beta }{4\alpha }\right) \tilde{\psi }\right| ^2\\&\!\!\!\qquad +\frac{1}{\alpha ^2t^2}\left| \left( -i\partial _{\varphi }+\frac{t^2}{2}\cos \theta \ \sin \beta \right) \tilde{\psi }\right| ^2\Bigg ) \, t^2\sin \alpha \varphi \, \mathrm{d}t \, \mathrm{d}\theta \, \mathrm{d}\varphi . \end{aligned}$$

Appendix 2: Model operators

Proposition 7.1

Let \({\mathfrak H}_{\omega }\) be defined on \(\mathrm{L}^2(\mathbb R_{+},t^2\, \mathrm{d}t)\) by

$$\begin{aligned} {\mathfrak H}_{\omega } = -\frac{1}{t^{2}}\partial _{t}t^2\partial _{t}+t^2+\frac{\omega ^2}{t^2}. \end{aligned}$$

The eigenpairs of \({\mathfrak H}_{\omega }\) are \((\mathfrak l_{n}^\omega ,\mathfrak f_{n}^\omega )_{n\ge 1}\) given by

$$\begin{aligned} \mathfrak l_{n}^\omega =4n-2+\sqrt{1+4\omega ^2},\qquad \mathfrak f_{n}(t)=P^\omega _{n}(t^2)\ \mathrm{e}^{-t^2/2}, \end{aligned}$$

with \(P^\omega _{n}\) a polynomial function of degree \(n-1\).

Corollary 7.2

For \(c>0\) the eigenpairs of the operator

$$\begin{aligned} \tilde{\mathfrak H}= -\frac{1}{t^{2}}\partial _{t}t^2\partial _{t}+c t^2, \end{aligned}$$

defined on \(\mathrm{L}^2(\mathbb R_{+},t^2\, \mathrm{d}t)\) are given by

$$\begin{aligned} \mathfrak l_{n}=c^{1/2}(4n-1),\qquad \mathfrak f_{n}(t)=c^{1/4}\mathfrak f_{n}^0(c^{1/4}t)=c^{1/4}P_{n}^0(c^{1/4}t)\ \mathrm{e}^{-c^{1/2} t^2/2}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonnaillie-Noël, V., Raymond, N. Magnetic Neumann Laplacian on a sharp cone. Calc. Var. 53, 125–147 (2015). https://doi.org/10.1007/s00526-014-0743-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0743-8

Mathematics Subject Classification (2000)

Navigation