Skip to main content
Log in

Schrödinger–Poisson systems in the 3-sphere

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate nonlinear Schrödinger–Poisson systems in the 3-sphere. We prove existence results for these systems and discuss the question of the stability of the systems with respect to their phases. While, in the subcritical case, we prove that all phases are stable, we prove in the critical case that there exists a sharp explicit threshold below which all phases are stable and above which resonant frequencies and multi-spikes blowing-up solutions can be constructed. Solutions of the Schrödinger–Poisson systems are standing waves solutions of the electrostatic Maxwell–Schrödinger system. Stable phases imply the existence of a priori bounds on the amplitudes of standing waves solutions. Unstable phases give rise to resonant states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Malchiodi, A.: Perturbation methods and semilinear elliptic problems in R n. In: Progress in Mathematics, vol. 240. Birkhauser Verlag, Basel (2006)

  2. Bahri, A.: Critical Points at Infinity in Some Variational Problems. Pitman Research Notes in Mathematics Series, vol. 182. Longman Scientific & Technical, Harlow; copublished in the United States with Wiley, Inc., New York (1989)

  3. Bianchi G., Egnell H.: A note on the Sobolev inequality. J. Funct. Anal. 100, 18–24 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brézis H., Nirenberg L.: Positive solutions of nonlinear ellitpic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MATH  Google Scholar 

  5. Caffarelli L.A., Gidas B., Spruck J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen C.C., Lin C.S.: Estimates of the conformal scalar curvature equation via the method of moving planes. Commun. Pure Appl. Math. 50, 971–1017 (1997)

    Article  Google Scholar 

  7. Del Pino M., Felmer P., Musso M.: Two-bubble solutions in the super-critical Bahri–Coron’s problem. Calc. Var. Partial Differ. Equ. 16, 113–145 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Druet O., Hebey E.: Stability for strongly coupled critical elliptic systems in a fully inhomogeneous medium. Anal. PDEs 2, 305–359 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Druet O., Hebey E.: Existence and a priori bounds for electrostatic Klein–Gordon–Maxwell systems in fully inhomogeneous spaces. Commun. Contemp. Math. 12, 831–869 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Druet O., Laurain P.: Stability of the Pohozaev obstruction in dimension 3. J. Eur. Math. Soc. 12, 1117–1149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Druet, O., Hebey, E., Robert, F.: Blow-Up Theory for Elliptic PDEs in Riemannian Geometry Mathematical Notes, vol. 45. Princeton University Press, Princeton, NJ (2004)

  12. Druet O., Hebey E., Vétois, J.: Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian. J. Funct. Anal. 258, 999–1059 (2010)

    Google Scholar 

  13. Gidas B., Spruck J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Partial. Differ. Equ. 6, 883–901 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldhaber A.S., Nieto M.M.: Terrestrial and extraterrestrial limits on the photon mass. Rev. Mod. Phys. 43, 277–296 (1971)

    Article  Google Scholar 

  15. Goldhaber A.S., Nieto M.M.: Photon and graviton mass limits. Rev. Mod. Phys. 82, 939–979 (2010)

    Article  Google Scholar 

  16. Hebey E., Robert F.: Asymptotic analysis for fourth order Paneitz equations with critical growth. Adv. Calc. Var. 4, 229–275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hebey, E., Truong, T.T.: Static Klein–Gordon–Maxwell–Proca systems in 4-dimensional closed manifolds. J. Reine Angew. Math. (to appear)

  18. Hebey E., Robert F., Wen Y.: Compactness and global estimates for a fourth order equation of critical Sobolev growth arising from conformal geometry. Commun. Contemp. Math. 8, 9–65 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li Y.Y., Zhang L.: A Harnack type inequality for the Yamabe equations in low dimensions. Calc. Var. Partial Differ. Equ. 20, 133–151 (2004)

    Article  MATH  Google Scholar 

  20. Luo J., Gillies G.T., Tu L.C.: The mass of the photon. Rep. Prog. Phys. 68, 77–130 (2005)

    Article  Google Scholar 

  21. Pauli W.: Relativistic field theories of elementary particles. Rev. Mod. Phys. 13, 203–232 (1941)

    Article  Google Scholar 

  22. Rey O., Wei J.: Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. I. N = 3. J. Funct. Anal. 212, 472–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Robert, F.: Green’s functions estimates for elliptic type operators. Preprint (2006)

  24. Ruegg H., Ruiz-Altaba M.: The Stueckelberg field. Int. J. Mod. Phys. A 19, 3265–3348 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schrödinger E.: The Earth’s and the Sun’s permanent magnetic fields in the unitary field theory. Proc. R. Ir. Acad. A 49, 135–148 (1943)

    MATH  Google Scholar 

  26. Struwe M.: A global compactness result for elliptic boundary problems involving limiting nonlinearities. Math. Z. 187, 511–517 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wei, J.: Existence and stability of spikes for the Gierer-Meinhardt system. In: Handbook of Differential Equations: Stationary Partial Differential Equations vol. V, pp. 487–585. Elsevier/North-Holland, Amsterdam (2008)

  28. Willem, M.: Minimax theorems. In: Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser Boston, Inc., Boston, MA (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Hebey.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebey, E., Wei, J. Schrödinger–Poisson systems in the 3-sphere. Calc. Var. 47, 25–54 (2013). https://doi.org/10.1007/s00526-012-0509-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0509-0

Mathematics Subject Classification (2000)

Navigation