Skip to main content
Log in

Ellipsoidal support vector data description

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a data domain description formed by the minimum volume covering ellipsoid around a dataset, called “ellipsoidal support vector data description (eSVDD).” The method is analogous to support vector data description (SVDD), but instead, with an ellipsoidal domain description allowing tighter space around the data. In eSVDD, a hyperellipsoid extends its ability to describe more complex data patterns by kernel methods. This is explicitly achieved by defining an “empirical feature map” to project the images of given samples to a higher-dimensional space. We compare the performance of the kernelized ellipsoid in one-class classification with SVDD using standard datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahipaşaoğlu S (2015) A first-order algorithm for the a-optimal experimental design problem: a mathematical programming approach. Stat Comput 25(6):1113–1127

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahipaşaoğlu S (2015) Fast algorithms for the minimum volume estimator. J Global Optim 62(2):351–370

    Article  MathSciNet  MATH  Google Scholar 

  3. Ahmadi A, Dmitry Malioutov RL (2014) Robust minimum volume ellipsoids and higher-order polynomial level sets. In: 7th NIPS workshop on optimization for machine learning, Montreal, Quebec, Canada

  4. Barnett V, Lewis T (1994) Outliers in statistical data, 3rd edn. Wiley series in probability and mathematical statistics. Wiley, Chichester

  5. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  6. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  7. Dolia A, Bie T, Harris C, Shawe-Taylor J, Titterington DM (2006) The minimum volume covering ellipsoid estimation in Kernel-defined feature spaces, Lecture Notes in Computer Science, vol 4212. Springer, Berlin, Heidelberg, pp 630–637

  8. Dolia A, Harris C, Shawe-Taylor J, Titterington D (2007) Kernel ellipsoidal trimming. Comput Stat Data Anal 52(1):309–324

    Article  MathSciNet  MATH  Google Scholar 

  9. Glineur F (1998) Pattern separation via ellipsoids and conic programming. Master’s thesis, Faculté Polytechnique de Mons, Mons, Belgium

  10. Henk M (2012) Löwner–John Ellipsoids. Doc Math (extra volume: optimization stories) pp 95–106

  11. Huang G, Chen H, Zhou Z, Yin F, Guo K (2011) Two-class support vector data description. Pattern Recognit 44(2):320–329

    Article  MATH  Google Scholar 

  12. Khachiyan LG (1996) Rounding of polytopes in the real number model of computation. Math Oper Res 21(2):307–320

    Article  MathSciNet  MATH  Google Scholar 

  13. Kumar P, Yildirim E (2005) Minimum-volume enclosing ellipsoids and core sets. J Optim Theory Appl 126(1):1–21

    Article  MathSciNet  MATH  Google Scholar 

  14. Lasserre JB (2013) A generalization of the Löwner-John’s ellipsoid theorem. In: 52nd IEEE Conference on Decision and Control (CDC). Florence, Italy, pp 415–420

  15. Löfberg J (2004) YALMIP : a toolbox for modeling and optimization in MATLAB. In: Computer aided control systems design, 2004 IEEE international symposium on, pp 284–289. http://users.isy.liu.se/johanl/yalmip

  16. Mu T, Nandi AK (2009) Multiclass classification based on extended support vector data description. IEEE Trans Syst Man Cybern B 39(5):1206–1216

    Article  Google Scholar 

  17. PW R, Juszczak P, Paclik P, Pekalska E, de Ridder D, Tax D, Verzakov S (2015) PRTools 5.0. A Matlab toolbox for pattern recognition, software and documentation downloaded March

  18. Rimon E, Boyd SP (1997) Obstacle collision detection using best ellipsoid fit. J Intell Robot Syst 18(2):105–126

    Article  MATH  Google Scholar 

  19. Rosen J (1965) Pattern separation by convex programming. J Math Anal Appl 10(1):123–134

    Article  MathSciNet  MATH  Google Scholar 

  20. Schölkopf B, Mika S, Burges CJC, Knirsch P, Müller KR, Rätsch G, Smola AJ (1999) Input space versus feature space in kernel-based methods. IEEE Trans Neural Netw 10:1000–1017

    Article  Google Scholar 

  21. Shioda R, Tunçel L (2007) Clustering via minimum volume ellipsoids. Comput Optim Appl 37(3):247–295

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun P, Freund RM (2004) Computation of minimum-volume covering ellipsoids. Oper Res 52(5):690–706

    Article  MathSciNet  MATH  Google Scholar 

  23. Sylvester JJ (1857) A question in the geometry of situation. Q J Pure Appl Math 1:79

    Google Scholar 

  24. Tax DM, Duin RP (1999) Support vector domain description. Pattern Recogn Lett 20(11–13):1191–1199

    Article  Google Scholar 

  25. Tax DM, Duin RP (2004) Support vector data description. Mach Learn 54(1):45–66

    Article  MATH  Google Scholar 

  26. Tax DMJ (2015a) Data sets for one-class classification. http://homepage.tudelft.nl/n9d04/occ/

  27. Tax DMJ (2015b) DDtools, the data description toolbox for Matlab. Version 2.1.2

  28. Titterington DM (1975) Optimal design: some geometrical aspects of D-optimality. Biometrika 62(2):313–320

    Article  MathSciNet  MATH  Google Scholar 

  29. Todd MJ, Yıldırım EA (2007) On Khachiyan’s algorithm for the computation of minimum-volume enclosing ellipsoids. Discret Appl Math 155(13):1731–1744

    Article  MathSciNet  MATH  Google Scholar 

  30. Toh KC (1999) Primal-dual path-following algorithms for determinant maximization problems with linear matrix inequalities. Comput Optim Appl 14(3):309–330

    Article  MathSciNet  MATH  Google Scholar 

  31. Tütüncü RH, Toh KC, Todd MJ (2003) Solving semidefinite-quadratic-linear programs using SDPT3. Math Progr 95(2):189–217

    Article  MathSciNet  MATH  Google Scholar 

  32. Vandenberghe L, Boyd S, Wu SP (1998) Determinant maximization with linear matrix inequality constraints. SIAM J Matrix Anal Appl 19:499–533

    Article  MathSciNet  MATH  Google Scholar 

  33. Wei X, Löfberg J, Feng Y, Li Y (2007) Enclosing machine learning for class description. Lect Notes Comput Sci LNCS 4491(Part 1):424–433

    Article  Google Scholar 

  34. Wei XK, Li YH, Li YF, Zhang DF (2007b) Enclosing machine learning: concepts and algorithms. Neural Comput Appl 17(3):237–243

    Article  MathSciNet  Google Scholar 

  35. Xiong H, Swamy MNS, Ahmad MO (2005) Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw 16(2):460–474

    Article  Google Scholar 

  36. Zhang Y, Gao L (2003) On numerical solution of the maximum volume ellipsoid problem. SIAM J Optim 14(1):53–76

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nipon Theera-Umpon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teeyapan, K., Theera-Umpon, N. & Auephanwiriyakul, S. Ellipsoidal support vector data description. Neural Comput & Applic 28 (Suppl 1), 337–347 (2017). https://doi.org/10.1007/s00521-016-2343-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-016-2343-3

Keywords

Navigation