Skip to main content
Log in

Attraction and diffusion in nature-inspired optimization algorithms

  • Theory and Applications of Soft Computing Methods
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Nature-inspired algorithms usually use some form of attraction and diffusion as a mechanism for exploitation and exploration. In this paper, we investigate the role of attraction and diffusion in algorithms and their ways in controlling the behavior and performance of nature-inspired algorithms. We highlight different ways of the implementations of attraction in algorithms such as the firefly algorithm, charged system search, and the gravitational search algorithm. We also analyze diffusion mechanisms such as random walks for exploration in algorithms. It is clear that attraction can be an effective way for enhancing exploitation, while diffusion is a common way for exploration. Furthermore, we also discuss the role of parameter tuning and parameter control in modern metaheuristic algorithms and then point out some key topics for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arora S, Singh S (2013) The firefly optimization algorithm: convergence analysis and parameter selection. Int J Comput Appl 69(3):48–52

    Google Scholar 

  2. Beyer H-G (1995) Toward a theory of evolution strategies: self-adaptation. Evolut Comput 3(3):311–347

    Article  Google Scholar 

  3. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35:268–308

    Article  Google Scholar 

  4. Branke J, Elomari JA (2012) Meta-optimization for parameter tuning with a flexible computing budget. In: Soule T (ed) Proceedings of the 14th Annual Conference on genetic and evolutionary computation (GECCO ‘12). ACM, New York, pp 1245–1252

    Google Scholar 

  5. Burke E, Gendreau K, Hyde M, Kendall M, Ochoa G, Özcan E, Qu R (2013) Hyper-heuristics: a survey of the state of the art. J Op Res Soc 64(12):1695–1724

    Article  Google Scholar 

  6. Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 45(3):35:1–35:33

    MATH  Google Scholar 

  7. Gandomi AH, Yang XS, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  Google Scholar 

  8. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley, Reading, Mass

    MATH  Google Scholar 

  9. Hanne T (1999) On the convergence of multiobjective evolutionary algorithms. Eur J Op Res 117(3):553–564

    Article  MathSciNet  MATH  Google Scholar 

  10. Hanne T (2001) Intelligent strategies for meta multiple criteria decision making. Springer, Berlin

    Book  MATH  Google Scholar 

  11. Hanne T (2007) A multiobjective evolutionary algorithm for approximating the efficient set. Eur J Op Res 176(3):1723–1734

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3–4):267–289

    Article  MATH  Google Scholar 

  13. Kaveh A, Talatahari S (2012) Charged system search for optimal design of frame structures. Appl Soft Comput 12(1):382–393

    Article  Google Scholar 

  14. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, pp. 1942–1948

  15. Mantegna RN (1994) Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes. Phys Rev E 49:4677–4683

    Article  Google Scholar 

  16. Pavlyukevich I (2007) Lévy flights, non-local search and simulated annealing. J Comput Phys 226:1830–1844

    Article  MathSciNet  MATH  Google Scholar 

  17. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  18. Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution (Evolution strategy: optimization of technical systems based on concepts from biological evolution). Fromman-Holzboog, Stuttgart

    Google Scholar 

  19. Talatahari S, Jahani Y (2015) Hybrid charged system search-particle swarm optimization for design of single-layer barrel vault structures. Asian J Civil Eng 16(4):515–533

    Google Scholar 

  20. Tan KC, Goh CK, Yang YJ, Lee TH (2006) Evolving better population distribution and exploration in evolutionary multi-objective optimization. Eur J Op Res 171(2):463–495

    Article  MATH  Google Scholar 

  21. Tan KC, Chiam SC, Mamun AA, Goh CK (2009) Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur J Op Res 197(2):701–713

    Article  MATH  Google Scholar 

  22. Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, Bristol

    Google Scholar 

  23. Yang XS (2008) Introduction to computational mathematics. World Scientific Publishing, Singapore

    Book  MATH  Google Scholar 

  24. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Watanabe O, Zeugmann T (eds) Proceedings of 5th Symposium on Stochastic Algorithms, Foundations and Applications, SAGA 2009, Springer, Heidelberg, pp. 169–178

  25. Yang XS (2011) Metaheuristic optimization: algorithm analysis and open problems. In: Pardalos PM, Rebennack S (eds) Experimental algorithms. Springer, Berlin, pp 21–32

    Chapter  Google Scholar 

  26. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceedings of world congress on nature and biologically inspired computing (NaBIC 2009, India), IEEE Publications, USA, pp. 210–214

  27. Yang XS, Deb S (2010) Engineering optimization by cuckoo search. Int J Math Model Numer Optim 1(4):330–343

    MATH  Google Scholar 

  28. Yang XS, Deb S (2010) Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization. Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, pp 101–111

    Chapter  Google Scholar 

  29. Yang XS, Deb S (2012) Two-stage eagle strategy with differential evolution. Int J Bio-Inspir Comput 4(1):1–5

    Article  Google Scholar 

  30. Yang XS, Deb S, Fong S (2011) Accelerated particle swarm optimization and support vector machine for business optimization and applications. Networked digital technologies (NDT2011), communications in computer and information science, vol 136. Springer, Berlin, pp 53–66

    Google Scholar 

  31. Yang XS, Gandomi AH (2012) Bat algorithm: a novel approach for global engineering optimization. Eng Comput 29(5):464–483

    Article  Google Scholar 

  32. Yazdani S, Nezamabadi-pour H, Kamyab S (2014) A gravitational search algorithm for multimodal optimization. Swarm Evolut Comput 14(1):1–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hanne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, XS., Deb, S., Hanne, T. et al. Attraction and diffusion in nature-inspired optimization algorithms. Neural Comput & Applic 31, 1987–1994 (2019). https://doi.org/10.1007/s00521-015-1925-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-015-1925-9

Keywords

Navigation