Skip to main content

Advertisement

Log in

A self-adaptive intelligent single-particle optimizer compression algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a self-adaptive intelligent single-particle optimizer (AdpISPO) for DNA sequence data compression codebook design. Featured with the crucial self-adaptive optimization process, AdpISPO is capable of attaining better fitness value than most existing particle swarm optimization variants with no specific parameters required. A novel DNA sequence data compression algorithm, namely BioSqueezer, is proposed in this paper. Introducing all the unique data features in constructing the compression codebook, BioSqueezer compresses DNA sequences by replacing similar fragments with the index of its corresponding code vector. For attaining higher compression ratio, the AdpISPO is employed in BioSqueezer for the codebook design. Experimental results on benchmark DNA sequences demonstrate that BioSqueezer attains better performance than other state-of-the-art DNA compression algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cochrane G, Akhtar R, Bonfield J et al (2009) Petabyte-scale innovations at the European nucleotide archive. Nucleic Acids Res 37:D19–D25

    Article  Google Scholar 

  2. Rajeswari PR, Apparao A (2010) GenBit compress—algorithm for repetitive and non-repetitive DNA sequences. J Theor Appl Inf Technol 11(1):25–29

    Google Scholar 

  3. Grumbach S, Tahi F (1994) A new challenge for compression algorithms: genetic sequences. Inf Process Manage 30:875–886

    Article  MATH  Google Scholar 

  4. Chen X, Kwong S, Li M (2000) A compression algorithm for DNA sequences and its applications in genome comparison. In: Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, ACM Press, Tokyo, pp 51–61

  5. Matsumoto T, Sadakane K, Imai H (2000) Biological sequence compression algorithms. Genome Inform 11:43–52

    Google Scholar 

  6. Korodi G, Tabus I (2007) DNA sequence compression-based on the normalized maximum likelihood model. IEEE Signal Process Mag 24:47–53

    Article  Google Scholar 

  7. Ouyang J, Feng P, Kang J (2012) Fast compression of huge DNA sequence data. In: Proceedings of 5th International Conference on Biomedical Engineering and Informatics, IEEE Computer Society, Xi’an, pp 885–888

  8. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proc. IEEE ICNN, Nov.–Dec. pp 1942–1948

  9. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  10. de Oca MAM, Stutzle T, Birattari M, Dorigo M (2009) Frankenstein’s PSO: a composite particle swarm optimization algorithm. IEEE Trans Evol Comput 13(5):1120–1131

    Article  Google Scholar 

  11. Ji Z, Zhou JR et al (2010) A novel intelligent single particle optimizer. Chin J Comput 33:556–561

    Article  Google Scholar 

  12. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Part 1 (of 6), IEEE Press, Perth, pp 1942–1948

  13. Gupta R, Mittal A et al (2006) An efficient algorithm to detect palindromes in DNA sequences using periodicity transform. Signal Process 86:2067–2073

    Article  MATH  Google Scholar 

  14. Tran TT, Emanuele VA, Zhou GT (2004) Techniques for detecting approximate tandem repeats in DNA. In: Proceedings of international conference on acoustics, speech and signal processing, IEEE Press, Montreal, pp 449–452

  15. Wu S, Manber U (1992) Fast text searching: allowing errors. Commun ACM 35(10):83–91

    Article  Google Scholar 

  16. Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions for numerical global optimization. In: Proceedings of IEEE swarm intelligence symposium, pp 68–75

  17. Shi Y, Eberhart RC (1998) A modified particle swarm optimizer. In: Proceedings of IEEE International Congress on Evolutionary Computation, pp 69–73

  18. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evolut Comput 10(3):281–295

    Article  Google Scholar 

  19. Zhan ZH, Zhang J, Li Y et al (2011) Orthogonal learning particle swarm optimization. IEEE Trans Evolut Comput 15(6):832–847

    Article  Google Scholar 

  20. Osborne M (2000) Predicting DNA sequences using a backoff language model. http://www.cogsci.ed.ac.uk/osborne/dna-backoff.ps.gz

  21. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2008) GenBank. Nucleic Acids Res 36:D25–D30

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61103174, 61301182), Scientific and Technological Innovation Project of Department of Education of Guangdong Province (2013KJCX0162, 20134408120004), Natural Science Foundation of Guangdong Province (China) (S2013040016857, S2013010012227), Fundamental Research General Program of Shenzhen City (JCYJ20120613113535357, JCYJ20130329105415965), Research Fund of Shenzhen University Lab and Equipment Management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, J. A self-adaptive intelligent single-particle optimizer compression algorithm. Neural Comput & Applic 25, 1285–1292 (2014). https://doi.org/10.1007/s00521-014-1609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-014-1609-x

Keywords

Navigation