Skip to main content

Advertisement

Log in

Superior neuro-fuzzy classification systems

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Although adaptive neuro-fuzzy inference system (ANFIS) has very fast convergence time, it is not suitable for classification problems because its outputs are not integer. In order to overcome this problem, this paper provides four adaptive neuro-fuzzy classifiers; adaptive neuro-fuzzy classifier with linguistic hedges (ANFCLH), linguistic hedges neuro-fuzzy classifier with selected features (LHNFCSF), conjugate gradient neuro-fuzzy classifier (SCGNFC) and speeding up scaled conjugate gradient neuro-fuzzy classifier (SSCGNFC). These classifiers are used to achieve very fast, simple and efficient breast cancer diagnosis. Both SCGNFC and SSCGNFC systems are optimized by scaled conjugate gradient algorithms. In these two systems, k-means algorithm is used to initialize the fuzzy rules. Also, Gaussian membership function is only used for fuzzy set descriptions, because of its simple derivative expressions. The other two systems are based on linguistic hedges (LH) tuned by scaled conjugate gradient. The classifiers performances are analyzed and compared by applying them to breast cancer diagnosis. The results indicated that SCGNFC, SSCGNFC and ANFCLH achieved the same accuracy of 97.6608 % in the training phase while LHNFCSF performed better than other methods in the training phase by achieving an accuracy of 100 %. In the testing phase, the overall accuracies of LHNFCSF achieved 97.8038 %, which is superior also to other methods. Applying LHNFCSF not only reduces the dimensions of the problem, but also improves classification performance by discarding redundant, noise-corrupted or unimportant features. Also, the k-means clustering algorithm was used to determine the membership functions of each feature. LHNFCSF achieved mean RMSE values of 0.0439 in the training phase after feature selection and gives the best testing recognition rates of 98.8304 and 98.0469 during training and testing phases, respectively using two clusters for each class. The results strongly suggest that ANFCLH can aid in the diagnosis of breast cancer and can be very helpful to the physicians for their final decision on their patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdolmaleki P, Buadu LD, Naderimansh H (2001) Feature extraction and classification of breast cancer on dynamic magnetic resonance imaging using artificial neural network. Cancer Lett 171(2):183–191

    Article  Google Scholar 

  2. Abdolmaleki P, Buadu LD, Murayama S et al (1997) Neural network analysis of breast cancer from MRI findings. Radiat Med 15(5):283–293

    Google Scholar 

  3. Abbass HA (2002) An evolutionary artificial neural networks approach for breast cancer diagnosis. Artif Intell Med 25(3):265–281

    Article  Google Scholar 

  4. Alturki FA, Abdennour AB (1999) Neuro-fuzzy control of a steam boiler turbine unit. In: Proceedings of the IEEE, international conference on control applications, pp 1050–1055

  5. Arulampalam G, Bouzerdoum A (2001) Application of shunting inhibitory artificial neural networks to medical diagnosis. In: Seventh Australian and New Zealand Intelligent Information Systems Conference, Perth, Australia, pp 89–94

  6. Azar AT (2010) Fuzzy Systems. IN-TECH, Vienna. ISBN 978-953-7619-92-3

    Google Scholar 

  7. Azar AT (2010) Adaptive neuro-fuzzy systems. In: Azar AT (ed) Fuzzy systems. IN-TECH, Austria, pp 85–110

    Google Scholar 

  8. Baguia C (2003) Breast cancer detection using rank-nearest neighbor classification rules. Pattern Recogn 36(1):367–381

    Google Scholar 

  9. Battiti R (1989) Accelerated backpropagation learning: two optimization methods. Complex Syst 3(4):331–342

    MATH  Google Scholar 

  10. Benecchi L (2009) Neuro-fuzzy system for prostate cancer diagnosis. Urology 68(2):357–361

    Article  Google Scholar 

  11. Bezdek JC, Ehrlich R, Full W (1984) FCM: the Fuzzy C-Means Clustering Algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  12. Bird RE, Wallace TW, Yankaskas BC (1992) Analysis of cancers missed at screening mammography. Radiology 184(3):613–617

    Google Scholar 

  13. Bishop CM (1996) Neural networks for pattern recognition. Oxford University Press, New York

    MATH  Google Scholar 

  14. Burke HB, Goodman PH, Rosen DB et al (1997) Artificial neural networks improve the accuracy of cancer survival prediction. Cancer 79(4):857–862

    Article  Google Scholar 

  15. Cetişli B, Barkana A (2010) Speeding up the scaled conjugate gradient algorithm and its application in neuro-fuzzy classifier training. Soft Comput 14(4):365–378

    Article  MATH  Google Scholar 

  16. Cetişli B (2010) Development of an adaptive neuro-fuzzy classifier using linguistic hedges: part 1. Expert Syst Appl 37(8):6093–6101

    Article  Google Scholar 

  17. Cetişli B (2010) The effect of linguistic hedges on feature selection: part 2. Expert Syst Appl 37(8):6102–6108

    Article  Google Scholar 

  18. Chen Y, Abraham A, Yang B (2005) Hybrid neurocomputing for breast cancer detection. The Fourth IEEE International Workshop on Soft Computing as Transdisciplinary Science and Technology (WSTST’5), pp 884–892

  19. Cheng HD, Cai X, Chen X, Hu L, Lou X (2003) Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recogn 36(12):2967–2991

    Article  MATH  Google Scholar 

  20. Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267–278

    Google Scholar 

  21. Chou SM, Lee TS, Shao YE, Chen IF (2004) Mining the breast cancer pattern using artificial neural networks and multivariate adaptive regression splines. Expert Syst Appl 27(1):133–142

    Article  Google Scholar 

  22. Diamantidis NA, Karlis D, Giakoumakis EA (2000) Unsupervised stratification of cross-validation for accuracy estimation. Artif Intell 116(1–2):1–16

    Article  MathSciNet  MATH  Google Scholar 

  23. Floyd CE, Lo JY, Yun AJ et al (1994) Prediction of breast cancer malignancy using an artificial neural network. Cancer 74(11):2944–2948

    Article  Google Scholar 

  24. Fletcher R (2000) Practical methods of optimization, 2nd edn. Wiley, New York

    Google Scholar 

  25. Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7(2):149–154

    Article  MathSciNet  MATH  Google Scholar 

  26. Fogel DB, Wasson EC, Boughton EM, Porto VW (1998) Evolving artificial neural networks for screening features from mammograms. Artif Intell Med 14(3):317–326

    Article  Google Scholar 

  27. Francois D, Rossi F, Wertz V, Verleysen M (2007) Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 70(7–9):1276–1288

    Article  Google Scholar 

  28. Furundzic D, Djordjevic M, Bekic AJ (1998) Neural networks approach to early breast cancer detection. J Syst Archit 44(8):617–633

    Article  Google Scholar 

  29. Gill PE, Murray W, Wright MH (1980) Practical optimization. Academic Press Inc., New York

    Google Scholar 

  30. Hamdan H, Garibaldi JM (2010) Adaptive Neuro-Fuzzy Inference System (ANFIS) in Modelling Breast Cancer Survival. WCCI 2010 IEEE World Congress on Computational Intelligence, July, 18-23, CCIB, Barcelona, Spain, pp 1–8

  31. Hartigan JA, Wong MA (1979) A k-means clustering algorithm. Appl Stat 28(1):100–108

    Article  MATH  Google Scholar 

  32. Hestenes M (1980) Conjugate direction methods in optimization. Springer-Verlag, New York

    Book  MATH  Google Scholar 

  33. Hosseini R, Ellis T, Mazinani M, Dehmeshki J (2011) A genetic fuzzy approach for rule extraction for rule-based classification with application to medical diagnosis. In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD); 05–09 Sep 2011, Athens, Greece

  34. Hung WL, Yang MS, Yu J, Hwang CM. (2010) Feature-Weighted Mountain Method with Its Application to Color Image Segmentation. RSKT’10, LNAI 6401, pp 537–544. Springer-Verlag Berlin Heidelberg

  35. Hu Y, Zhang SZ, Yu JK, Liu J, Zheng S, Hu X (2005) Diagnostic application of serum protein pattern and artificial neural network software in breast cancer. Ai Zheng 24(1):67–71

    Google Scholar 

  36. Hu Q, Yu D, Xie Z (2006) Information-preserving hybrid data reduction based on fuzzy-rough techniques. Pattern Recogn Lett 27(5):414–423

    Article  Google Scholar 

  37. Ioanna C, Evalgelos D, George K (2000) Fast detection of masses in computer aided mammography. IEEE Signal Process Mag 17(1):54–64

    Article  Google Scholar 

  38. Islam MJ, Ahmadi M, Sid-Ahmed MA (2010) An efficient automatic mass classification method in digitized mammograms using artificial neural network. Int J Artif Intell Appl (IJAIA) 1(3):1–13

    Google Scholar 

  39. Jain R, Abraham A (2004) A comparative study of fuzzy classification methods on breast cancer data. Australas Phys Eng Sci Med 27(4):213–218

    Article  Google Scholar 

  40. Jang JSR (1992) Neuro-fuzzy modeling: architectures, analyses, and applications. Ph.D. Dissertation, EECS Department, University of California at Berkeley

  41. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  42. Jang JSR, Sun CT (1995) Neuro-fuzzy modeling and control. Proc IEEE 83(3):378–406

    Article  Google Scholar 

  43. Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  44. Janghel, R.R., Shukla, A., Tiwari, R., Kala, R. (2010). Breast cancer diagnosis using Artificial Neural Network models. In: Proceedings of the 3rd IEEE International Conference on Information Sciences and Interaction Sciences, Chengdu, China, June 23–25, pp 89–94

  45. Jerez-Aragonés JM, Gomez-Ruiz JA, Ramos-Jiménez G et al (2003) A combined neural network and decision trees model for prognosis of breast cancer relapse. Artif Intell Med 27(1):45–63

    Article  Google Scholar 

  46. Johansson EM, Dowla EU, Goodman DM (1991) Backpropagation learning for multi-layer feed-forward neural networks using the conjugate gradient method. Int J Neural Syst 2(4):291–302

    Article  Google Scholar 

  47. Kala R, Janghel RR, Tiwari R, Shukla A (2011) Diagnosis of breast cancer by modular evolutionary neural networks. Int J Biomed Eng Technol (IJBET) 7(2):194–211

    Article  Google Scholar 

  48. Kiyan T, Yildirim T (2004) Breast cancer diagnosis using statistical neural networks. J Elect Electron Eng 4(2):1149–1153

    Google Scholar 

  49. Kuzmiak CM, Dancel R, Pisano E et al (2006) Consensus review: a method of assessment of calcifications that appropriately undergo a six-month follow-up. Acad Radiol 13(5):621–629

    Article  Google Scholar 

  50. Lee K, Street WN (2003) A time- and memory-efficient algorithm for automated segmentation of breast cancer nuclei. J Korea Inform Sci Soc 30(9–10):973–982 (in Korean)

    Google Scholar 

  51. Lee HM, Chen CM, Chen JM, Jou YL (2001) An efficient fuzzy classifier with feature selection based on fuzzy entropy. IEEE Trans Syst Man Cybern Part B 31(3):426–432

    Article  Google Scholar 

  52. Li H, Chen CLP, Huang HP (2001) Fuzzy fuzzy neural intelligent system: mathematical foundation and the applications in engineering. CRC Press LLC, New York

    Google Scholar 

  53. Liu Y, Zheng YF (2006) FS_SFS: a novel feature selection method for support vector machines. Pattern Recogn 39(7):1333–1345

    Article  MATH  Google Scholar 

  54. Lundin M, Lundin J, Burke HB et al (1999) Artificial neural networks applied to survival prediction in breast cancer. Oncology 57(4):281–286

    Article  Google Scholar 

  55. Malek J, Sebri A, Mabrouk S et al (2009) Automated breast cancer diagnosis based on GVF-snake segmentation, wavelet features extraction and fuzzy classification. Signal Process Syst 55(1–3):49–66

    Article  Google Scholar 

  56. Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man-Mach Stud 7(1):1–13

    Article  MATH  Google Scholar 

  57. Mangasarian OL, Setiono R, Wolberg WH (1990) Pattern recognition via linear programming: theory and application to medical diagnosis. In: Proceedings of the Workshop on Large-Scale Numerical Optimization: 22–31, Philadelphia, PA, SIAM

  58. Marchevsky AM, Shah S, Patel S (1999) Reasoning with uncertainty in pathology: artificial neural networks and logistic regression as tools for prediction of lymph node status in breast cancer patients. Mod Pathol 12(5):505–513

    Google Scholar 

  59. Mariani L, Coradini D, Biganzoli E et al (1997) Prognostic factors for metachronous contralateral breast cancer: a comparison of the linear Cox regression model and its artificial neural network extension. Breast Cancer Res Treat 44(2):167–178

    Article  Google Scholar 

  60. Mattfeldt T, Kestler HA, Sinn HP (2004) Prediction of the axillary lymph node status in mammary cancer on the basis of clinicopathological data and flow cytometry. Med Biol Eng Comput 42(6):733–739

    Article  Google Scholar 

  61. Mazurowski MA, Habas PA, Zurada JM et al (2008) Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance. Neural Netw 21(2–3):427–436

    Article  Google Scholar 

  62. Mian S, Ball G, Hornbuckle J et al (2003) A prototype methodology combining surface-enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditions. Proteomics 3(9):1725–1737

    Article  Google Scholar 

  63. Mitra S, Hayashi Y (2000) Neuro-fuzzy rule generation: survey in soft computing framework. IEEE Trans Neural Netw 11(3):748–757

    Article  Google Scholar 

  64. Moayedi F, Boostani R, Kazemi AR, Katebi S, Dashti E (2010) Subclass fuzzy-SVM classifier as an efficient method to enhance the mass detection in mammograms. Iran J Fuzzy Syst 7(1):15–31

    Google Scholar 

  65. Moller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6:525–533

    Article  Google Scholar 

  66. Mousa R, Munib Q, Moussa A (2005) Breast cancer diagnosis system based on wavelet analysis and fuzzy-neural. Expert Syst Appl 28(4):713–723

    Article  Google Scholar 

  67. Naguib RN, Sakim HA, Lakshmi MS et al (1999) DNA ploidy and cell cycle distribution of breast cancer aspirate cells measured by image cytometry and analyzed by artificial neural networks for their prognostic significance. IEEE Trans Inf Technol Biomed 3(1):61–69

    Article  Google Scholar 

  68. Naguib RN, Adams AE, Horne CH et al (1997) Prediction of nodal metastasis and prognosis in breast cancer: a neural model. Anticancer Res 17(4A):2735–2741

    Google Scholar 

  69. Nauck D, Kruse R (1999) Neuro-fuzzy systems for function approximation. Fuzzy Sets Syst 10(2):261–271

    Article  MathSciNet  Google Scholar 

  70. Nieto J, Torres A (2003) Midpoint for fuzzy sets and their application in medicine. Artif Intell Med 27(1):321–355

    Google Scholar 

  71. Padmavati J (2011) A comparative study on breast cancer prediction using RBF and MLP. Int J Sci Eng Res 2(1):1–5

    Google Scholar 

  72. Pena-Reyes CA, Sipper M (1999) A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med 17(2):131–155

    Article  Google Scholar 

  73. Powell M (1977) Restart procedures for the conjugate gradient method. Math Program 12(1):241–254

    Article  MATH  Google Scholar 

  74. Rani KU (2010) Parallel approach for diagnosis of breast cancer using neural network technique. Int J Comput Appl 10(3):1–5

    Google Scholar 

  75. Ripley RM, Harris AL, Tarassenko L (2004) Non-linear survival analysis using neural networks. Stat Med 23(5):825–842

    Article  Google Scholar 

  76. Roberts M, Kahn E, Haddawy P (1995) Development of a Bayesian network for diagnosis of breast cancer. IJCAI-95 workshop on building probabilistic networks, Montréal, Québec, Canada

  77. Ronco AL (1999) Use of artificial neural networks in modeling associations of discriminant factors: towards an intelligent selective breast cancer screening. Artif Intell Med 16(3):299–309

    Article  Google Scholar 

  78. Russo M, Jain L (2001) Fuzzy learning and application. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  79. Sarvestan SA, Safavi AA, Parandeh MN, Salehi M (2010) Predicting Breast Cancer Survivability using data mining techniques. In: 2nd International conference on software technology and engineering (ICSTE), 2:227–231

  80. Salim MI, Ahmad AH, Ariffin I et al (2012) Development of breast cancer diagnosis tool using hybrid magnetoacoustic method and artificial neural network. Int J Biol Biomed Eng 6(1):61–68

    Google Scholar 

  81. Salzberg SL (1997) On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min Knowl Disc 1(3):317–327

    Article  Google Scholar 

  82. Sameti M, Ward R (1996) A fuzzy segmentation algorithm for mammogram partitioning. Third international workshop on digital mammography, Amsterdam, Netherlands, pp 471–474. ISBN: 0-444-82431-6

  83. Sebri A, Malek J, Tourki R (2007) Automated breast cancer diagnosis based on GVF-snake segmentation, wavelet features extraction and neural network classification. J Comput Sci 3(8):600–607

    Article  Google Scholar 

  84. Seker H, Odetayo MO, Petrovic D et al (2002) Assessment of nodal involvement and survival analysis in breast cancer patients using image cytometric data: statistical, neural network and fuzzy approaches. Anticancer Res 22(1A):433–438

    Google Scholar 

  85. Sickles EA (1986) Breast calcifications: mammographic evaluation. Radiology 160(2):289–293

    Google Scholar 

  86. Shanthi S, Bhaskaran VM (2011) Intuitionistic fuzzy C-means and decision tree approach for breast cancer detection and classification. Eur J Sci Res 66(3):345–351

    Google Scholar 

  87. Spence D, Parra L, Sajda P (2001) Detection, synthesis and compression in mammographic image analysis using a hierarchical image probability model. Artif Intell Med 25(31):365–371

    Google Scholar 

  88. Street WN (1991) Toward automated cancer diagnosis: an interactive system for cell feature extraction. Technical Report 1052, Computer Sciences Department, University of Wisconsin, Madison, WI

  89. Street W (1998) A neural network model for prognostic prediction. In: Proceeding ICML ‘98 Proceedings of the Fifteenth International Conference on Machine Learning:540–546. ISBN: 1-55860-556-8

  90. Street WN (2000) Xcyt: A system for remote cytological diagnosis and prognosis of breast cancer. In: Jain LC (ed) Soft computing techniques in breast cancer prognosis and diagnosis. World Scientific Publishing, Singapore, pp 297–322

    Chapter  Google Scholar 

  91. Suckling J, Parker J, Dance D, Astley S, Hutt I, Boggis C et al (1994) The mammographic images analysis society digital mammogram database. Exerpta Med Int Congr Ser 1069:375–378

    Google Scholar 

  92. Sun CT, Jang JSR (1993) A neuro-fuzzy classifier and its applications. Proc. of IEEE Int. Conf. on Fuzzy Systems, San Francisco 1:94–98. Int Conf Fuzzy Syst, San Francisco 1:94–98

  93. Sawarkar SD, Ghatol AA, Pande AP (2006) Neural Network aided Breast Cancer Detection and Diagnosis. Proceedings of the 7th WSEAS International Conference on Neural Networks, Cavtat, Croatia, June 12–14, pp 158–163

  94. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1):116–132

    Article  MATH  Google Scholar 

  95. Theoridis S, Koutroumbas K (2003) Pattern recognition, 2nd edn. Academic Press, London

    Google Scholar 

  96. Tourassi GD, Markey MK, Lo JY, Floyd CE (2001) A neural network approach to breast cancer diagnosis as a constraint satisfaction problem. Med Phys 28(5):804–811

    Article  Google Scholar 

  97. Tsang ECC, Yeung DS, Wang XZ (2003) OFFSS: optimal fuzzy-valued feature subset selection. IEEE Trans Fuzzy Syst 11(2):202–213

    Article  Google Scholar 

  98. Übeyli ED (2009) Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer. J Med Syst 33(5):353–358

    Article  Google Scholar 

  99. UCI (2012) Machine Learning Repository. http://archive.ics.uci.edu/ml/index.html. Accessed 23 Oct 2012

  100. Verma K, Zakos J (2001) A computer-aided diagnosis system for digital mammograms based on fuzzy-neural and feature extraction techniques. IEEE Trans Inf Technol Biomed 5(1):46–54

    Article  Google Scholar 

  101. Wang Z, Palade V (2007) A Comprehensive fuzzy-based framework for cancer microarray data gene expression analysis. In: Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering, 14–17 Oct. 2007, Oxford Univ., Oxford, pp 1003–1010

  102. Wang JS, Lee GCS (2002) Self-adaptive neuron-fuzzy inference systems for classification applications. IEEE Trans Fuzzy Syst 10(6):790–802

    Article  Google Scholar 

  103. Wolberg WH, Street WN (2002) Computer-generated nuclear features compared to axillary lymph node status and tumor size as indicators of breast cancer survival. Human Pathol 33(11):1086–1091

    Article  Google Scholar 

  104. Wolberg WH, Mangasarian OL (1990) Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proc Natl Acad Sci USA 87:9193–9196

    Article  MATH  Google Scholar 

  105. Zaiane O, Maria-Luiza A, Alexandru C (2001) Application of data mining techniques for medical image classification. Proceedings of second international workshop on multimedia data mining (MDM/KDD’) in conjunction with seventh ACM SIGKDDS, USA

  106. Zaiane O, Maria-Luiza A, Alexandru C (2002) Mammography classification by an association rule-based classifier. Proceedings of second international workshop on multimedia data mining (MDM/KDD’) in conjunction with seventh ACM SIGKDD, USA

  107. Zadeh LA (1965) Fuzzy sets. Inform Cont 8(3):338–353

    Article  MathSciNet  MATH  Google Scholar 

  108. Zadeh LA (1968) Fuzzy algorithm. Inf Cont 12(2):94–102

    Article  MathSciNet  MATH  Google Scholar 

  109. Zadeh LA (1973) Outline of a new approach to the analysis of complex system and decision processes. IEEE Trans Syst Man Cyber 3(1):28–44

    Article  MathSciNet  MATH  Google Scholar 

  110. Zadeh LA (1983) Commonsense knowledge representation based on fuzzy logic. IEEE Comput 16(10):61–65

    Article  Google Scholar 

  111. Zadeh LA (1983) Fuzzy logic. IEEE Comput 1(4):83–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azar, A.T., El-Said, S.A. Superior neuro-fuzzy classification systems. Neural Comput & Applic 23 (Suppl 1), 55–72 (2013). https://doi.org/10.1007/s00521-012-1231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-012-1231-8

Keywords

Navigation