Skip to main content
Log in

Muscle wasting in heart failure

The role of nutrition

  • geriatrics: at crossroads of medicine
  • Published:
Wiener klinische Wochenschrift Aims and scope Submit manuscript

Summary

Muscle wasting and malnutrition are common complications in patients with advanced heart failure (HF); however, both remain underdiagnosed and undertreated although they both play relevant roles in the progression of HF. The risk of muscle wasting in patients with HF increases in those patients with malnutrition or at risk of malnutrition. Muscle wasting and malnutrition are thought to be positively influenced by adequate therapeutic interventions such as physical activity and nutritional support. Consequently, early detection of malnutrition in patients with HF is recommended. This review discusses muscle wasting and nutritional status, describing the effects of malnutrition on muscle wasting in patients with HF. We review specific issues related to muscle wasting and nutritional status in patients with HF; however, no established strategies currently exist to focus on patients suffering from muscle wasting with malnutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bekfani T, Pellicori P, Morris DA, et al. Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life. Int J Cardiol. 2016;222:41–6.

    Article  PubMed  Google Scholar 

  2. Lainscak M, Filippatos GS, Gheorghiade M, Fonarow GC, Anker SD. Cachexia: common, deadly, with an urgent need for precise definition and new therapies. Am J Cardiol. 2008;101(11A):8E–10E.

    Article  PubMed  Google Scholar 

  3. Coats AJ. Research on cachexia, sarcopenia and skeletal muscle in cardiology. J Cachexia Sarcopenia Muscle. 2012;3:219–23.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brown JC, Harhay MO, Harhay MN. Sarcopenia and mortality among a population-based sample of community-dwelling older adults. J Cachexia Sarcopenia Muscle. 2016;7(3):290–8.

    Article  PubMed  Google Scholar 

  5. Koca I, Savas E, Ozturk ZA, et al. The evaluation in terms of sarcopenia of patients with fibromyalgia syndrome. Wien Klin Wochenschr. 2015; doi:10.1007/s00508-015-0821-8.

    Google Scholar 

  6. Jones SE, Maddocks M, Kon SS, Canavan JL, Nolan CM, Clark AL, et al. Sarcopenia in COPD: prevalence, clinical correlates and response to pulmonary rehabilitation. Thorax. 2015;70:213–8.

    Article  PubMed  Google Scholar 

  7. Foley RN, Wang C, Ishani A, Collins AJ, Murray AM. Kidney function and sarcopenia in the United States general population: NHANES III. Am J Nephrol. 2007;27:279–86.

    Article  PubMed  Google Scholar 

  8. Muscaritoli M, Anker SD, Argilés J, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin Nutr. 2010;29:154–9.

    Article  CAS  PubMed  Google Scholar 

  9. von Haehling S. The wasting continuum in heart failure: from sarcopenia to cachexia. Proc Nutr Soc. 2015;74(4):367–77.

    Article  Google Scholar 

  10. Htun NC, Ishikawa-Takata K, Kuroda A, et al. Screening for malnutrition in community dwelling older japanese: preliminary development and evaluation of the japanese Nutritional Risk Screening Tool (NRST). J Nutr Health Aging. 2016;20(2):114–20.

    Article  CAS  PubMed  Google Scholar 

  11. Grossniklaus DA, O’Brien MC, Clark PC, et al. Nutrient intake in heart failure patients. J Cardiovasc Nurs. 2008;23(4):357–63.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rahman A, Jafry S, Jeejeebhoy K, et al. Malnutrition and cachexia in heart failure. JPEN J Parenter Enteral Nutr. 2016;40(4):475–86.

    Article  PubMed  Google Scholar 

  13. Wells JL, Dumbrell AC. Nutrition and aging: assessment and treatment of compromised nutritional status in frail elderly patients. Clin Interv Aging. 2006;1(1):67–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997;127(Suppl):990 S–991 S.

    PubMed  Google Scholar 

  15. von Haehling S, Morley JE, Anker SD. An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachexia Sarcopenia Muscle. 2010;1:129–33.

    Article  Google Scholar 

  16. Morley JE, Kim MJ, Haren MT, et al. Frailty and the aging male. Aging Male. 2005;8:135–40.

    Article  CAS  PubMed  Google Scholar 

  17. Trobec K, von Haehling S, Anker SD, et al. Growth hormone, insulin-like growth factor 1, and insulin signaling – a pharmacological target in body wasting and cachexia. J Cachexia Sarcopenia Muscle. 2011;2(4):191–200.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tyrovolas S, Koyanagi A, Olaya B, et al. Factors associated with skeletal muscle mass, sarcopenia, and sarcopenic obesity in older adults: a multi-continent study. J Cachexia Sarcopenia Muscle. 2016;7(3):312–21.

    Article  PubMed  Google Scholar 

  19. Gao L, Jiang J, Yang M, et al. Prevalence of sarcopenia and associated factors in chinese community-dwelling elderly: comparison between rural and urban areas. J Am Med Dir Assoc. 2015;16(11):1003.e1–1003.e6.

    Article  Google Scholar 

  20. Cederholm T, Bosaeus I, Barazzoni R, et al. Diagnostic criteria for malnutrition – An ESPEN Consensus Statement. Clin Nutr. 2015;34(3):335–40.

    Article  CAS  PubMed  Google Scholar 

  21. Alchin DR. Sarcopenia: describing rather than defining a condition. J Cachexia Sarcopenia Muscle. 2014;5(4):265–8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412–23.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Anker SD, Ponikowski PP, Clark AL, et al. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur Heart J. 1999;20:683–93.

    Article  CAS  PubMed  Google Scholar 

  24. Fülster S, Tacke M, Sandek A, et al. Muscle wasting in patients with chronic heart failure: results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur Heart J. 2013;34:512–9.

    Article  PubMed  CAS  Google Scholar 

  25. Delmonico MJ, Harris TB, Lee JS, et al. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J Am Geriatr Soc. 2007;55:769–74.

    Article  PubMed  Google Scholar 

  26. Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: The health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61:1059–64.

    Article  PubMed  Google Scholar 

  27. Coats AJ, Clark AL, Piepoli M, et al. Symptoms and quality of life in heart failure: the muscle hypothesis. Br Heart J. 1994;72:S36–S39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morley JE, von Haehling S, Anker SD, et al. From sarcopenia to frailty: a road less traveled. J Cachexia Sarcopenia Muscle. 2014;5(1):5–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Calvani R, Marini F, Cesari M, et al. Biomarkers for physical frailty and sarcopenia: state of the science and future developments. J Cachexia Sarcopenia Muscle. 2015;6(4):278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Morley JE, Baumgartner RN, Roubenoff R, et al. Sarcopenia. J Lab Clin Med. 2001;137:231–43.

    Article  CAS  PubMed  Google Scholar 

  31. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50:889–96.

    Article  PubMed  Google Scholar 

  32. Baumgartner RN, Wayne SJ, Waters DL, et al. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res. 2004;12(12):1995–2004.

    Article  PubMed  Google Scholar 

  33. Fielding RA, Vellas B, Evans WJ, et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12:249e256.

    Article  Google Scholar 

  34. Chen LK, Liu LK, Woo J, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15(2):95–101.

    Article  PubMed  Google Scholar 

  35. Dupuy C, Lauwers-Cances V, Guyonnet S, et al. Searching for a relevant definition of sarcopenia: results from the cross-sectional EPIDOS study. J Cachexia Sarcopenia Muscle. 2015;6(2):144–54.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Morley JE, Abbatecola AM, Argiles JM, et al. Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc. 2011;12(6):403–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Stenholm S, Harris TB, Rantanen T, et al. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care. 2008;11:693–700.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mangner N, Weikert B, Bowen TS, et al. Skeletal muscle alterations in chronic heart failure: differential effects on quadriceps and diaphragm. J Cachexia Sarcopenia Muscle. 2015;6(4):381–90.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Leong DP, Teo KK, Rangarajan S, et al. Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet. 2015;386(9990):266–73.

    Article  PubMed  Google Scholar 

  40. Lainscak M, von Haehling S, Anker SD. PURE muscle and more. Int J Cardiol. 2016;202:446–7.

    Article  PubMed  Google Scholar 

  41. Rantanen T, Masaki K, Foley D, et al. Grip strength changes over 27 yr in Japanese – American men. J Appl Physiol. 1998;85:2047–53.

    CAS  PubMed  Google Scholar 

  42. Rittweger J, Beller G, Ehrig J, et al. Bone-muscle strength indices for the human lower leg. Bone. 2000;27:319–26.

    Article  CAS  PubMed  Google Scholar 

  43. Laurentani F, Russo C, Bandinelli S, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95:1851–60.

    Article  Google Scholar 

  44. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–56.

    Article  CAS  PubMed  Google Scholar 

  45. Abellan van Kan G, Rolland Y, Onder G, et al. Gait speed as a marker of adverse outcomes. J Nutr Health Aging. 2009;13:881–9.

    Article  CAS  PubMed  Google Scholar 

  46. Lo AX, Donnelly JP, McGwin G Jr, et al. Impact of gait speed and instrumental activities of daily living on all-cause mortality in adults ≥65 years with heart failure. Am J Cardiol. 2015;115(6):797–801.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Morley JE, Cao L. Rapid screening for sarcopenia. J Cachexia Sarcopenia Muscle. 2015;6(4):312–4.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Drescher C, Konishi M, Ebner N, et al. Loss of muscle mass: current developments in cachexia and sarcopenia focused on biomarkers and treatment. J Cachexia Sarcopenia Muscle. 2015;6(4):303–11.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Marzetti E, Lees HA, Wohlgemuth SE, Leeuwenburgh C. Sarcopenia of aging: underlying cellular mechanisms and protection by calorie restriction. Biofactors. 2009;35(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  50. Steinbeck L, Nbner N, Valentova M, et al. Detection of muscle wasting in patients with chronic heart failure using C‑terminal agrin fragment: results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Eur J Heart Fail. 2015;17:1283–93.

    Article  CAS  PubMed  Google Scholar 

  51. van Bokhorst-de van der Schueren MA, Lonterman-Monasch S, de Vries OJ, et al. Prevalence and determinants for malnutrition in geriatric outpatients. Clin Nutr. 2013;32(6):1007–11.

    Article  PubMed  Google Scholar 

  52. Aquilani R, Opasich C, Verri M, et al. Is nutritional intake adequate in chronic heart failure patients? J Am Coll Cardiol. 2003;42:1218–23.

    Article  PubMed  Google Scholar 

  53. Freeman LM, Roubenoff R. The nutrition implications of cardiac cachexia. Nutr Rev. 1994;52:340–7.

    Article  CAS  PubMed  Google Scholar 

  54. van Norren K, Rusli F, van Dijk M, et al. Behavioural changes are a major contributing factor in the reduction of sarcopenia in caloric-restricted ageing mice. J Cachexia Sarcopenia Muscle. 2015;6(3):253–68.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wakabayashi H, Sakuma K. Rehabilitation nutrition for sarcopenia with disability: a combination of both rehabilitation and nutrition care management. J Cachexia Sarcopenia Muscle. 2014;5:269–77.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gibbs CR, Jackson G, Lip GY. ABC of heart failure. Non-drug management. BMJ. 2000;320:366–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. von Haehling S, Doehner W, Anker SD. Nutrition, metabolism, and the complex pathophysiology of cachexia in chronic heart failure. Cardiovasc Res. 2007;73(2):298–309.

    Article  CAS  Google Scholar 

  58. Landi F, Liperoti R, Russo A, et al. Association of anorexia with sarcopenia in a community-dwelling elderly population: results from the ilSIRENTE study. Eur J Nutr. 2013;52(3):1261–8.

    Article  PubMed  Google Scholar 

  59. Anker SD, Coats AJ. Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation. Chest. 1999;115(3):836–47.

    Article  CAS  PubMed  Google Scholar 

  60. Andreae C, Strömberg A, Årestedt K. Prevalence and associated factors for decreased appetite among patients with stable heart failure. J Clin Nurs. 2016;25:1703–12.

    Article  PubMed  Google Scholar 

  61. Correia MI, Waitzberg DL. The impact of malnutrition on morbidity. Mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin Nutr. 2003;22(3):235–9.

    Article  PubMed  Google Scholar 

  62. Obiesan T, Toth MJ, Kendall D. Energy expenditure and symptom severity in men with heart failure. Am J Cardiol. 1996;77:1250–2.

    Article  Google Scholar 

  63. Tacke M, Ebner N, Boschmann M, et al. Resting energy expenditure and the effects of muscle wasting in patients with chronic heart failure: results from the Studies Investigating Comorbidities Aggravating Heart Failure (SICA-HF). J Am Med Dir Assoc. 2013;14(11):837–41.

    Article  PubMed  Google Scholar 

  64. Sandek A, Bauditz J, Swidsinski A, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50:1561–9.

    Article  CAS  PubMed  Google Scholar 

  65. King D, Smith ML, Chapman TJ, et al. Fat malabsorption in elderly patients with cardiac cachexia. Age Ageing. 1996;25:144–9.

    Article  CAS  PubMed  Google Scholar 

  66. King D, Smith ML, Lye M. Gastro intestinal protein loss in elderly patients with cardiac cachexia. Age Ageing. 1996;25:221–3.

    Article  CAS  PubMed  Google Scholar 

  67. Gielen E, O’Neill TW, Pye SR, et al. Endocrine determinants of incident sarcopenia in middle-aged and elderly European men. J Cachexia Sarcopenia Muscle. 2015;6(3):242–52.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Matsuo Y, Gleitsmann K, Mangner N, et al. Fibronectin type III domain containing 5 expression in skeletal muscle in chronic heart failure-relevance of inflammatory cytokines. J Cachexia Sarcopenia Muscle. 2015;6(1):62–72.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Doehner W, Pflaum CD, Rauchhaus M, et al. Leptin, insulin sensitivity and growth hormone binding protein in chronic heart failure with and without cardiac cachexia. Eur J Endocrinol. 2001;145:727–35.

    Article  CAS  PubMed  Google Scholar 

  70. Wren AM, Small CJ, Ward HL, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000;141:4325–8.

    Article  CAS  PubMed  Google Scholar 

  71. Nagaya N, Uematsu M, Kojima M, et al. Elevated circulating level of ghrelin in cachexia associated with chronic heart failure: relationships between ghrelin and anabolic/catabolic factors. Circulation. 2001;104:2034–8.

    Article  CAS  PubMed  Google Scholar 

  72. Suskin N, McKelvie RS, Burns RJ, et al. Glucose and insulin abnormalities relate to functional capacity in patients with congestive heart failure. Eur Heart J. 2000;21:1368–75.

    Article  CAS  PubMed  Google Scholar 

  73. Doehner W, Rauchhaus M, Godsland IF, et al. Insulin resistance in moderate chronic heart failure is related to hyperleptinaemia, but not to norepinephrine or TNF-alpha. Int J Cardiol. 2002;83(1):73–81.

    Article  PubMed  Google Scholar 

  74. Kondrup J, Allison SP, Elia M, et al. Educational and clinical practice committee, European society of parenteral and enteral nutrition (ESPEN). ESPEN guidelines for nutrition screening. Clin Nutr. 2002;2003(22):415e21.

    Google Scholar 

  75. Elia M. Screening for malnutrition: A multidisciplinary responsibility. Development and Use of the Malnutrition Universal Screening Tool (‘MUST’) for Adults. Redditch: BAPEN; 2003.

    Google Scholar 

  76. Kondrup J, Rasmussen HH, Hamberg O, et al. Nutritional Risk Screening (NRS 2002): a new method based on an analysis of controlled clinical trials. Clin Nutr. 2003;22:321–36.

    Article  PubMed  Google Scholar 

  77. Rubenstein LZ, Harker JO, Salvà A, Guigoz Y, Vellas B. Screening for undernutrition in geriatric practice: developing the short-form mini-nutritional assessment (MNA-SF). J Gerontol A Biol Sci Med Sci. 2001;56(6):M366-72.

  78. Kinugasa Y, Kato M, Sugihara S, et al. Geriatric nutritional risk index predicts functional dependency and mortality in patients with heart failure with preserved ejection fraction. Circ J. 2013;77(3):705–11.

    Article  CAS  PubMed  Google Scholar 

  79. Adejumo OL, Koelling TM, Hummel S. Nutritional Risk Index predicts mortality in hospitalized advanced heart failure patients. J Heart Lung Transplant. 2015;34(11):1385–9.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Al-Najjar Y, Clark AL. Predicting outcome in patients with left ventricular systolic chronic heart failure using a nutritional risk index. Am J Cardiol. 2012;109:1315–20.

    Article  PubMed  Google Scholar 

  81. Aziz EF, Javed F, Pratap B, et al. Malnutrition as assessed by nutritional risk index is associated with worse outcome in patients admitted with acute decompensated heart failure: an ACAP-HF data analysis. Heart Int. 2011;6:e2.

    PubMed  PubMed Central  Google Scholar 

  82. Narumi T, Arimoto T, Funayama A, et al. Prognostic importance of objective nutritional indexes in patients with chronic heart failure. J Cardiol. 2013;62(5):307–13.

    Article  PubMed  Google Scholar 

  83. Bonilla-Palomas JL, Gámez-López AL, Anguita-Sánchez MP, et al. Impact of malnutrition on long-term mortality in hospitalized patients with heart failure. Rev Esp Cardiol. 2011;64:752–8.

    Article  PubMed  Google Scholar 

  84. Gustafsson F, Kragelund CB, Torp-Pedersen C, et al. Effect of obesity and being overweight on long-term mortality in congestive heart failure: influence of left ventricular systolic function. Eur Heart J. 2005;26(1):58–64.

    Article  PubMed  Google Scholar 

  85. Kenchaiah S, Pocock SJ, Wang D, et al. Body mass index and prognosis in patients with chronic heart failure: insights from the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) Program. Circulation. 2007;116(6):627–36.

    Article  PubMed  Google Scholar 

  86. Horwich TB, Kalantar-Zadeh K, MacLellan RW, et al. Albumin levels predict survival in patients with systolic heart failure. Am Heart J. 2008;155:883–9.

    Article  CAS  PubMed  Google Scholar 

  87. Omran ML, Morley JE. Assessment of protein energy malnutrition in older persons, part I: History, examination, body composition, and screening tools. Nutrition. 2000;16:50–63.

    Article  CAS  PubMed  Google Scholar 

  88. Omran ML, Morley JE. Assessment of protein energy malnutrition in older persons, Part II: Laboratory evaluation. Nutrition. 2000;16:131–40.

    Article  CAS  PubMed  Google Scholar 

  89. Antlanger M, Hecking M, Haidinger M, et al. Fluid overload in hemodialysis patients: a cross-sectional study to determine its association with cardiac biomarkers and nutritional status. BMC Nephrol. 2013;14:266.

    Article  PubMed  PubMed Central  Google Scholar 

  90. van Bokhorst-de van der Schueren MA, Guaitoli PR, Jansma EP, et al. Nutrition screening tools: does one size fit all? A systematic review of screening tools for the hospital setting. Clin Nutr. 2014;33(1):39–58.

    Article  PubMed  Google Scholar 

  91. Nicol S, Carroll D, Homeyer C, et al. The identification of malnutrition in heart failure patients. Eur J Cardiovasc Nurs. 2002;1:139–47.

    Article  PubMed  Google Scholar 

  92. Broqvist M, Arnqvist H, Dahlstrom U, et al. Nutritional assessment and muscle energy metabolism in severe congestive heart failure: effects of long-term dietary supplementation. Eur Heart J. 1994;15:1641–50.

    CAS  PubMed  Google Scholar 

  93. Deutz NE, Bauer JM, Barazzoni R, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33:929–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Aquilani R, Opasich C, Gualco A, et al. Adequate energy-protein intake is not enough to improve nutritional and metabolic status in muscle-depleted patients with chronic heart failure. Eur J Heart Fail. 2008;10(11):1127–35.

    Article  CAS  PubMed  Google Scholar 

  95. Kimball SR, Fabian JR, Pavitt GD, et al. Regulation of guanine nucleotide exchange through phosphorylation of eukaryotic initiation factor eIF2alpha. Role of the alpha and delta-subunits of eiF2b. J Biol Chem. 1998;273:12841–5.

    Article  CAS  PubMed  Google Scholar 

  96. Wang X, Campbell LE, Miller CM, et al. Amino acid availability regulates p70S6 kinase and multiple translation factors. Biochem J. 1998;334:261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Volpi E, Ferrando AA, Yeckel CW, et al. Exogenous amino acids stimulate net muscle protein synthesis in the elderly. J Clin Invest. 1998;101:2000–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Anker SD, Negassa A, Coats AJS, et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet. 2003;361(9363):1077–83.

    Article  CAS  PubMed  Google Scholar 

  99. Adigun AQ, Ajayi AL. The effects of enalapril-digoxin-diuretic combination therapy on nutritional and anthropometric indices in chronic congestive heart failure: preliminary findings in cardiac cachexia. Eur J Heart Fail. 2001;3(3):359–63.

    Article  CAS  PubMed  Google Scholar 

  100. Stewart Coats AJ, Ho GF, Prabhash K, et al. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV non-small cell lung cancer or colorectal cancer: a randomized, double-blind, placebo-controlled, international multicentre phase II study (the ACT-ONE trial). J Cachexia Sarcopenia Muscle. 2016;7(3):355–65.

    Article  PubMed  PubMed Central  Google Scholar 

  101. von Haehling S, Lainscak M, Springer J, et al. Cardiac cachexia: a systematic overview. Pharmacol Ther. 2009;121(3):227–52.

    Article  CAS  Google Scholar 

  102. Lainscak M, Keber I, Anker SD. Body composition changes in patients with systolic heart failure treated with beta blockers: a pilot study. Int J Cardiol. 2006;106(3):319–22.

    Article  PubMed  Google Scholar 

  103. Springer J, Tschirner A, Haghikia A, et al. Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur Heart J. 2014;35(14):932–41.

    Article  CAS  PubMed  Google Scholar 

  104. Trobec K, Kerec Kos M, von Haehling S, et al. Pharmacokinetics of drugs in cachectic patients: a systematic review. PLOS ONE. 2013;8(11):e79603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cvan Trobec K, Kerec Kos M, Trontelj J, et al. Influence of cancer cachexia on drug liver metabolism and renal elimination in rats. J Cachexia Sarcopenia Muscle. 2015;6(1):45–52.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cvan Trobec K, Grabnar I, Kerec Kos M, et al. Bisoprolol pharmacokinetics and body composition in patients with chronic heart failure: a longitudinal study. Eur J Clin Pharmacol. 2016;72(7):813–22.

    Article  CAS  PubMed  Google Scholar 

  107. Gullett NP, Hebbar G, Ziegler TR. Update on clinical trials of growth factors and anabolic steroids in cachexia and wasting. Am J Clin Nutr. 2010;91(4):1143 S–1147 S.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Caminiti G, Volterrani M, Iellamo F, et al. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure: A double-blind, placebo-controlled, randomized study. J Am Coll Cardiol. 2009;54:919e927.

    Article  CAS  Google Scholar 

  109. Iellamo F, Volterrani M, Caminiti G, et al. Testosterone therapy in women with chronic heart failure: A pilot double-blind, randomized, placebo-controlled study. J Am Coll Cardiol. 2010;56:1310e1316.

    Article  CAS  Google Scholar 

  110. Toma M, McAlister FA, Coglianese EE, et al. Testosterone supplementation in heart failure: a meta-analysis. Circ Heart Fail. 2012;5(3):315–21.

    Article  CAS  PubMed  Google Scholar 

  111. Tschop M, Weyer C, Tataranni PA, et al. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50:707–9.

    Article  CAS  PubMed  Google Scholar 

  112. Nagaya N, Moriya J, Yasumura Y, et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation. 2004;110:3674–9.

    Article  CAS  PubMed  Google Scholar 

  113. Sidney S. Cardiovascular consequences of marijuana use. J Clin Pharmacol. 2002;42(11):64 S–70 S.

    Article  PubMed  Google Scholar 

  114. Ebner N, Elsner S, Springer J, et al. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview. Curr Opin Support Palliat Care. 2013;8:15–24.

    Article  Google Scholar 

  115. Ponikowski P, Voors AA, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200. doi:10.1093/eurheartj/ehw128.

    Article  PubMed  Google Scholar 

  116. Bowen TS, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2015;6(3):197–207.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Martone AM, Lattanzio F, Abbatecola AM, et al. Treating sarcopenia in older and oldest old. Curr Pharm Des. 2015;21(13):1715–22.

    Article  CAS  PubMed  Google Scholar 

  118. Dos Santos MR, Sayegh AL, Bacurau AV, et al. Effect of exercise training and testosterone replacement on skeletal muscle wasting in patients with heart failure with testosterone deficiency. Mayo Clin Proc. 2016;91(5):575–86.

    Article  CAS  PubMed  Google Scholar 

  119. Iolascon G, Di Pietro G, Gimigliano F, et al. Physical exercise and sarcopenia in older people: position paper of the Italian Society of Orthopaedics and Medicine (OrtoMed). Clin Cases Miner Bone Metab. 2014;11(3):215–21.

    PubMed  PubMed Central  Google Scholar 

  120. Breen L, Philp A, Shaw CS, et al. Beneficial effects of resistance exercise on glycemic control are not further improved by protein ingestion. PLOS ONE. 2011;6(6):e20613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang Y, Breen L, Burd NA, et al. Resistance exercise enhances myofibrillar protein synthesis with graded in-takes of whey protein in older men. Br J Nutr. 2012;108(10):1780–8.

    Article  CAS  PubMed  Google Scholar 

  122. Visvanathan R, Chapman I. Preventing sarcopaenia in older people. Maturitas. 2010;66(4):383–8.

    Article  CAS  PubMed  Google Scholar 

  123. Tieland M, Dirks ML, van der Zwaluw N, et al. Protein supplementation increases muscle mass gain during prolonged resistance-type exercise training in frail elderly people: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2012;13(8):713–9.

    Article  PubMed  Google Scholar 

  124. Franco MR, Tong A, Howard K, et al. Older people’s perspectives on participation in physical activity: a systematic review and thematic synthesis of qualitative literature. Br J Sports Med. 2015;49(19):1268–76.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Part of this work was funded by a grant from the Innovative Medicines Initiative – Joint Undertaking (IMI-JU 115621, SPRINT-T). M.R.S. was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 234052/2014-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Saitoh PhD.

Ethics declarations

Conflict of interest

M. Saitoh, M. Rodrigues dos Santos, and S. von Haehling declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saitoh, M., Rodrigues dos Santos, M. & von Haehling, S. Muscle wasting in heart failure. Wien Klin Wochenschr 128 (Suppl 7), 455–465 (2016). https://doi.org/10.1007/s00508-016-1100-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00508-016-1100-z

Keywords

Navigation