Skip to main content
Log in

An adaptive support vector regressor controller for nonlinear systems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this study, a novel online support vector regressor (SVR) controller based on system model estimated by a separate online SVR is proposed. The main idea is to obtain an SVR controller based on an estimated model of the system by optimizing the margin between reference input and system output. For this purpose, “closed-loop margin” which depends on tracking error is defined, then the parameters of the SVR controller are optimized so as to optimize the closed-loop margin and minimize the tracking error. In order to construct the closed-loop margin, the model of the system estimated by an online SVR is utilized. The parameters of the SVR controller are adjusted via the SVR model of system. The stability of the closed-loop system has also been analyzed. The performance of the proposed method has been evaluated by simulations carried out on a continuously stirred tank reactor (CSTR) and a bioreactor, and the results show that SVR model and SVR controller attain good modeling and control performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  • Astrom KJ, Wittenmark B (2008) Adaptive control. Dover Publications, Mineola

    Google Scholar 

  • Butler H (1992) Model reference adaptive control: from theory to practice. Prentice Hall, Great Britain

    MATH  Google Scholar 

  • Camacho EF (1993) Constrained generalized predictive control. IEEE Trans Autom Control 38(2):327–332. doi:10.1109/9.250485

    Article  MathSciNet  MATH  Google Scholar 

  • Camacho EF, Bordons C (1999) Model predictive control. Springer, New York

    Book  MATH  Google Scholar 

  • Clarke DW, Mohtadi C (1989) Properties of generalized predictive control. Automatica 25(6):859–875. doi:10.1016/0005-1098(89)90053-8

    Article  MathSciNet  MATH  Google Scholar 

  • Clarke DW, Mohtadi C, Tuffs P (1987) Generalized predictive control-part I: the basic algorithm. Automatica 23(2):137–148. doi:10.1016/0005-1098(87)90087-2

    Article  MATH  Google Scholar 

  • Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Efe MO (2007) Discrete time fuzzy sliding mode control of a biochemical process. In: Proceedings of 9th WSEAS international conference on automatic control, modeling and simulation (ACMOS’07), Istanbul

  • Fogler HH (2006) Elements of chemical reaction engineering. Pearson Education, USA

    Google Scholar 

  • Han F, Wang Z, Lei M, Zhou Z (2008) An iterative modified kernel for support vector regression. In: Proceedings of IEEE international conference on cybernetic intelligent systems (CIS 2008), Chengdu

  • Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, New Jersey

    MATH  Google Scholar 

  • Iplikci S (2006a) Online trained support vector machines-based generalized predictive control of non-linear systems. Int J Adapt Control Signal Process 20(10):599–621. doi:10.1002/acs.919

    Article  MathSciNet  MATH  Google Scholar 

  • Iplikci S (2006b) Support vector machines-based generalized predictive control. Int J Robust Nonlinear Control 16(17):843–862. doi:10.1002/rnc.1094

    Article  MathSciNet  MATH  Google Scholar 

  • Iplikci S (2010) A comparative study on a novel model-based PID tuning and control mechanism for nonlinear systems. Int J Robust Nonlinear Control 20(13):1483–1501. doi:10.1002/rnc.1524

    MathSciNet  MATH  Google Scholar 

  • Kravaris C, Palanki S (1988) Robust nonlinear state feedback under structured uncertainty. AIChe J 34(7):1119–1127. doi:10.1002/aic.690340708

    Article  MathSciNet  MATH  Google Scholar 

  • Levenspiel O (1999) Chemical reaction engineering. Wiley, USA

    Google Scholar 

  • Liu X, Yi J, Zhao D (2005) Adaptive inverse control system based on least squares support vector machines. In: Proceedings of 2nd international symposium on neural networks (ISNN 2005), Chongqing

  • Ma J, Theiler J, Perkins S (2003) Accurate online support vector regression. Neural Comput 15(11):2683–2703. doi:10.1162/089976603322385117

    Article  MATH  Google Scholar 

  • Mario M (2002) On-line support vector machine regression. In: Proceedings of 13th European conference on machine learning (ECML 2002), Helsinki

  • Norgaard M, Ravn O, Poulsen N, Hansen L (2000) Neural networks for modelling and control of dynamic systems. Springer, Great Britain

    Book  MATH  Google Scholar 

  • Saadia N, Amirat Y, Pontnau J, M’Sirdi NK (2001) Neural hybrid control of manipulators, stability analysis. Robotica 19:41–51. doi:10.1017/S0263574700002885

    Article  Google Scholar 

  • Shin J, Jin Kim H, Park S, Kim Y (2010) Model predictive flight control using adaptive support vector regression. Neurocomputing 73(4–6):1031–1037. doi:10.1016/j.neucom.2009.10.002

    Article  Google Scholar 

  • Smola AJ, Schlkopf B (2004) A tutorial on support vector regression. Stat Comput 14(3):199–222. doi:10.1023/B:STCO.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  • Sun C, Song J (2007) An adaptive internal model control based on LS-SVM. In: Proceedings of 4th international symposium on neural networks (ISNN 2007), Nanjing

  • Takao K, Yamamoto T, Hinamoto T (2006) A design of PID controllers with a switching structure by a support vector machine. In: Proceedings of 2006 IEEE international joint conference on neural network (IJCNN), Vancouver

  • Ucak K, Oke G (2011) Adaptive PID controller based on online LSSVR with kernel tuning. In: Proceedings of international symposium on innovations in intelligent systems and applications (INISTA 2011), Istanbul

  • Ungar LH (1990) A bioreactor benchmark for adaptive network-based process control. In: Miller WT III, Sutton RS, Werbos PJ (eds) Neural networks for control. MIT Press, Cambridge, pp 387–402

    Google Scholar 

  • Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–999. doi:10.1109/72.788640

  • Wanfeng S, Shengdun Z, Yajing S (2008) Adaptive PID controller based on online LSSVM identification. In: Proceedings of IEEE/ASME international conference on advanced intelligent mechatronics (AIM 2008), Xian

  • Wang H, Pi D, Sun Y (2007) Online SVM regression algorithm-based adaptive inverse control. Neurocomputing 70(4–6):952–959. doi:10.1016/j.neucom.2006.10.021

  • Wang X, Du Z, Chen J, Pan F (2009) Dynamic modeling of biotechnical process based on online support vector machine. J Comput 4(3):251–258. doi:10.4304/jcp.4.3.251-258

  • Wu KP, Wang SD (2009) Choosing the kernel parameters for support vector machines by the inter-cluster distance in the feature space. Pattern Recognit 42(5):710–717. doi:10.1016/j.patcog.2008.08.030

    Article  MATH  Google Scholar 

  • Wu W, Chou YS (1999) Adaptive feedforward and feedback control of non-linear time-varying uncertain systems. Int J Control 72(12):1127–1138. doi:10.1080/002071799220489

    Article  MathSciNet  MATH  Google Scholar 

  • Xu Z, Dai M, Meng D (2009) Fast and efficient strategies for model selection of Gaussian support vector machine. IEEE Trans Syst Man Cybern Part B Cybern 39(5):1292–1307. doi:10.1109/TSMCB.2009.2015672

    Article  Google Scholar 

  • Yuan X, Wang Y, Wu L (2008a) Composite feedforward-feedback controller for generator excitation system. Nonlinear Dyn 54(4):355–364. doi:10.1007/s11071-008-9334-6

    Article  MATH  Google Scholar 

  • Yuan XF, Wang YN, Wu LH (2008b) Adaptive inverse control of excitation system with actuator uncertainty. Neural Process Lett 27(2):125–136. doi:10.1007/s11063-007-9064-7

    Article  Google Scholar 

  • Zhao J, Li P, Wang XS (2009) Intelligent PID controller design with adaptive criterion adjustment via least squares support vector machine. In: Proceedings of 21st Chinese control and decision conference (CCDC 2009), Guilin

  • Zhicheng Z, Zhiyuan L, Zhimin X, Jinggang Z (2012) Internal model control based on LS-SVM for a class of nonlinear process. Phys Procedia 25:1900–1908. doi:10.1016/j.phpro.2012.03.328

    Article  Google Scholar 

  • Zhiying D, Xianfang W (2008) Nonlinear generalized predictive control based on online SVR. In: Proceedings of 2nd international symposium on intelligent information technology application, Shanghai

  • Zhong W, Pi D, Sun Y, Xu C, Chu S (2006) SVM based internal model control for nonlinear systems. In: Proceedings of 3rd international symposium on neural networks (ISNN 2006), Chengdu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kemal Uçak.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uçak, K., Öke Günel, G. An adaptive support vector regressor controller for nonlinear systems. Soft Comput 20, 2531–2556 (2016). https://doi.org/10.1007/s00500-015-1654-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1654-0

Keywords

Navigation