Skip to main content
Log in

Time-varying additive perturbations of well-posed linear systems

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

We study a time-varying well-posed system resulting from the additive perturbation of the generator of a time-invariant well-posed system. The associated generator family has the form \(A+G(t)\), where \(G(t)\) is a bounded operator on the state space and \(G(\cdot )\) is strongly continuous. We show that the resulting time-varying system (the perturbed system) is well-posed and investigate its properties. In the particular case when the unperturbed system is scattering passive, we derive an energy balance inequality for the perturbed system. We illustrate this theory using it to formulate the system corresponding to an electrically conducting rigid body moving in vacuo in a bounded domain, with an electromagnetic field (both in the rigid body and in the vacuum) described by Maxwell’s equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bátkai A, Csomós P, Farkas B, Nickel G (2011) Operator splitting for non-autonomous evolution equations. J Funct Anal 260:2163–2190

    Article  MATH  MathSciNet  Google Scholar 

  2. Chicone C, Latushkin Y (1999) Evolution semigroups in dynamical systems and differential equations. In: Mathematical Surveys and Monographs, vol 10. American Mathematical Society, Providence, RI

  3. Curtain RF, Pritchard AJ (1978) Infinite dimensional linear systems theory. In: LNCIS, vol 8. Springer, New York

  4. Dautray R, Lions JL (1990) Mathematical analysis and numerical methods for science and technology, vol 3. Spectral theory and applications. Springer, Berlin

  5. Engel K-J, Nagel R (2000) One-parameter semigroups for linear evolution equations. In: Graduate texts in mathematics, vol 194. Springer, New York

  6. Fleisch D (2008) A Student’s guide to Maxwell’s equations. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  7. Hadd S (2006) An evolution equation approach to nonautonomous linear systems with state, input, and output delays. SIAM J Control Optim 45:246–272

    Article  MATH  MathSciNet  Google Scholar 

  8. Hinrichsen D, Pritchard AJ (1994) Robust stability of linear evolution operators on Banach spaces. SIAM J Control Optim 32:1503–1541

    Article  MATH  MathSciNet  Google Scholar 

  9. Howland JS (1974) Stationary scattering theory for time-dependent Hamiltonians. Math Annalen 207:315–335

    Article  MATH  MathSciNet  Google Scholar 

  10. Jackson JD (2001) Classical electrodynamics, 3rd edn. Wiley, Hoboken, NJ (The first edition appeared in 1962)

  11. Jacob B, Dragan V, Pritchard AJ (1995) Infinite dimensional time varying systems with nonlinear output feedback. Integral Equ Oper Theory 22:440–462

    Article  MATH  MathSciNet  Google Scholar 

  12. Kato T (1970) Linear evolution equations of “hyperbolic” type. J Fac Sci Univ Tokyo 17:241–258

    MATH  Google Scholar 

  13. Kato T (1973) Linear evolution equations of “hyperbolic” type, II. J Math Soc Japan 25:648–666

    Article  MATH  MathSciNet  Google Scholar 

  14. Kobayasi K (1979) On a theorem for linear evolution equations of hyperbolic type. J Math Soc Japan 31:647–654

    Article  MathSciNet  Google Scholar 

  15. Latushkin Y, Tomilov Y (2004) Fredholm properties of evolution semigroups. Illinois J Math 48:999–1020

    MATH  MathSciNet  Google Scholar 

  16. Levi E, Panzer M (1966) Electromechanical power conversion. McGraw-Hill, New York

    Google Scholar 

  17. Malinen J, Staffans O, Weiss G (2006) When is a linear system conservative? Quarterly Appl Math 64:61–91

    Article  MATH  MathSciNet  Google Scholar 

  18. Minh NV, Räbiger F, Schnaubelt R (1998) Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line. Integral Equ Oper Theory 32:332–353

    Article  MATH  Google Scholar 

  19. Neidhardt H, Zagrebnov VA (2009) Linear non-autonomous Cauchy problems and evolution semigroups. Adv Differ Equ 14:289–340

    MATH  MathSciNet  Google Scholar 

  20. Nickel G (1997) Evolution semigroups for nonautonomous Cauchy problems. Abstract Appl Anal 2:73–95

    Article  MATH  MathSciNet  Google Scholar 

  21. Orfanidis SJ (2010) Electromagnetic waves and antennas. Available electronically at http://www.ece.rutgers.edu/~orfanidi/ewa/ version of August 2010

  22. Pazy A (1983) Semigroups of linear operators and applications to partial differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  23. Paunonen L, Pohjolainen S (2012) Periodic output regulation for distributed parameter systems. Math Control Signals Syst 24:403–441

    Article  MATH  MathSciNet  Google Scholar 

  24. Schnaubelt R (1999) Sufficient conditions for exponential stability and dichotomy of evolution equations. Forum Mathematicum 11:543–566

    Article  MATH  MathSciNet  Google Scholar 

  25. Schnaubelt R (2002) Feedbacks for nonautonomous regular linear systems. SIAM J Control Optim 41:1141–1165

    Article  MATH  MathSciNet  Google Scholar 

  26. Schnaubelt R (2002) Well-posedness and asymptotic behaviour of non-autonomous linear evolution equations. Progress in nonlinear differential equations and applications, vol 50. Birkhäuser Verlag, Basel, pp 311–338

    Google Scholar 

  27. Schnaubelt R, Weiss G (2010) Two classes of passive time-varying well-posed linear systems. Math Control Signals Syst 21:265–301

    Article  MATH  MathSciNet  Google Scholar 

  28. Staffans O (2004) Well-posed linear systems. Cambridge University Press, Cambridge

    Google Scholar 

  29. Staffans O, Weiss G (2002) Transfer functions of regular linear systems Part II: the system operator and the Lax-Phillips semigroup. Trans Amer Math Soc 354:3229–3262

    Article  MATH  MathSciNet  Google Scholar 

  30. Staffans O, Weiss G (2004) Transfer functions of regular linear systems, Part III: Inversions and duality. Integral Equ Oper Theory 49:517–558

    Article  MATH  MathSciNet  Google Scholar 

  31. Staffans O, Weiss G (2012) A physically motivated class of scattering passive linear systems. SIAM J Control Optim 50:3083–3112

    Article  MATH  MathSciNet  Google Scholar 

  32. Tanabe H (1979) Equations of evolution. Pitman, London

    MATH  Google Scholar 

  33. Tucsnak M, Weiss G (2009) Observation and control for operator semigroups. Birkhäuser Verlag, Basel

    Book  MATH  Google Scholar 

  34. Weiss G (1994) Transfer functions of regular linear systems. Part I: Characterizations of regularity. Trans Amer Math Soc 342:827–854

    MATH  MathSciNet  Google Scholar 

  35. Weiss G, Staffans O (2013) Maxwell’s equations as a scattering passive linear system. SIAM J Control Optim 51:3722–3756

    Article  MATH  MathSciNet  Google Scholar 

  36. Weiss G, Staffans O, Tucsnak M (2001) Well-posed linear systems-a survey with emphasis on conservative systems. Appl Math Comput Sci 11:101–127

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Hua Chen.

Additional information

This research was supported by the Israel Science Foundation Grant 701/10 and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JH., Weiss, G. Time-varying additive perturbations of well-posed linear systems. Math. Control Signals Syst. 27, 149–185 (2015). https://doi.org/10.1007/s00498-014-0136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-014-0136-8

Keywords

Navigation