Skip to main content
Log in

Natural ELF fields in the atmosphere and in living organisms

  • Special Issue: Atmospheric Electricity and Biometeorology
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Most electrical activity in vertebrates and invertebrates occurs at extremely low frequencies (ELF), with characteristic maxima below 50 Hz. The origin of these frequency maxima is unknown and remains a mystery. We propose that over billions of years during the evolutionary history of living organisms on Earth, the natural electromagnetic resonant frequencies in the atmosphere, continuously generated by global lightning activity, provided the background electric fields for the development of cellular electrical activity. In some animals, the electrical spectrum is difficult to differentiate from the natural background atmospheric electric field produced by lightning. In this paper, we present evidence for the link between the natural ELF fields and those found in many living organisms, including humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adair RK (1991) Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys Rev A 43(2):1039

    CAS  Google Scholar 

  • Balser M, Wagner CA (1960) Observations of the earth-ionosphere cavity resonances. Nature 188:638–642

    Google Scholar 

  • Banquet JP (1973) Spectral analysis of the EEG in meditation. Electroencephalogr Clin Neurophysiol 35:143–151

    CAS  Google Scholar 

  • Benzi R, Sutera A, Vulpiani A (1981) The mechanism of stochastic resonance. J Phys A Math Gen 14(11):L453–l457. https://doi.org/10.1088/0305-4470/14/11/006

    Article  Google Scholar 

  • Binhi VN, Rubin AB (2007) Magnetobiology: the kT paradox and possible solutions. Electromagn Biol Med 26(1):45–62

    CAS  Google Scholar 

  • Blake H, Gerard RW, Kleitman N (1939) Factors influencing brain potentials during sleep. J Neurophysiol 2. https://doi.org/10.1152/jn.1939.2.1.48

  • Blekhman I (1988) Synchronization in science and technology. ASME Press, New York

    Google Scholar 

  • Bosinger T, Haldoupis C, Belyaev PP, Yakunin MN, Semenova NV, Demekhov AG, Angelopoulos V (2002) Spectral properties of the ionospheric Alfven resonator observed at a low-latitude station (L = 1.3). J Geophys Res 107(A10):1281–1289

    Google Scholar 

  • Bullock TH (2002) Biology of brain waves: natural history and evolution of an informationrich sign of activity. K. Arikan, N. Moore (Eds.), Advances in Electrophysiology in Clinical Practice and Research, Kjellberg, Wheaton, IL

  • Bulsara AR, Gammaitoni L (1996) Tuning in to noise. Phys Today 49(3):39–45

    Google Scholar 

  • Cherry NJ (2002) Schumann resonances, a plausible biophysical mechanism for the human health effects of solar/geomagnetic activity. Nat Hazards 26:279–331

    Google Scholar 

  • Cherry NJ (2003) Human intelligence: the brain, and electromagnetic system synchronized by the Schumann resonance signal. Med Hypotheses 60(6):843–844

    CAS  Google Scholar 

  • Christian HJ et al (2003) Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J Geophys Res 108(D1):4005–4010

    Google Scholar 

  • Cummer S (2000) Modeling electromagnetic propagation in the earth-ionosphere waveguide. IEEE Trans Antennas Propag 48:1420–1429

    Google Scholar 

  • Dehaene S (1993) Temporal oscillations in human perception. Psychol Sci 4:264–270

    Google Scholar 

  • Del Giudice E, Fleischmann M, Preparata G, Talpo G (2002) On the “unreasonable” effects of ELF magnetic fields upon a system of ions. Bioelectromagnetics 23(7):522–530

    Google Scholar 

  • Elhalael G, Price C, Fixler D, Shainberg A (2019) Cardioprotection from stress conditions by weak magnetic fields in the Schumann resonance band. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-018-36341-z

    Article  CAS  Google Scholar 

  • Elson RC, Selverston AI, Huerta R, Rulkov NF, Rabinovich MI, Abarbanel HDI (1998) Synchronous behavior of two coupled biological neurons. Phys Rev Lett 81:5692–5695

    CAS  Google Scholar 

  • Engelmann W, Hellrung W, Johnsson A (1996) Circadian locomotor activity of Musca flies: recording method and effects of 10 Hz square-wave electric fields. Bioelectromagnetics 17:100–110

    CAS  Google Scholar 

  • Fedorov E, Schekotov AJ, Molchanov OA, Hayakawa M, Surkov VV, Gladichev VA (2006) An energy source for the mid-latitude IAR: world thunderstorm centers, nearby discharges or neutral wind fluctuations? Phys Chem Earth 31(4–9):462–468

    Google Scholar 

  • Fraser-Smith AC, Bannister PR (1998) Reception of ELF signals at antipodal distances, Radio Science, 33(1), 83–88

  • Freund JA, Schimansky-Geier L, Beisner B, Nieman A, Russell DF, Yakusheva T, Moss F (2002) Behavioral stochastic resonance: how the noise from a Daphnia swarm enhances prey capture by juvenile paddlefish. J Theor Biol 214:71–83

    Google Scholar 

  • Gammaitoni L, Hanggi P, Jung P, Marchesoni F (2009) Stochastic resonance: a remarkable idea that changed our perception of noise. Eur Phys J B 69:1–3

    CAS  Google Scholar 

  • Glass L, Mackey MC (1988) From clocks to chaos. The Rhythms in Life. Princeton University Press, Princeton

    Google Scholar 

  • Gola M, Kaminski J, Brzezicka A, Wrobel A (2012) Beta band oscillations as a correlate of alertness – changes in aging. Int J Psychophysiol 85:62–67

    Google Scholar 

  • Griffiths MJ, Preece AW, Green JL (1991) Monitoring sedation levels by EEG spectral analysis. Anesth Prog 38:227–231

    CAS  Google Scholar 

  • Haken H (1983) Synergetics: an introduction. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Kaiser F (1996) External signals and internal oscillation dynamics: biophysical aspects and modelling approaches for interactions of weak electromagnetic fields at the cellular level. Bioelectrochem Bioenerg 41(1):3–18

    CAS  Google Scholar 

  • Kasting JF (1993) Earth's early atmosphere. Science 259:920–926

    CAS  Google Scholar 

  • Kasting JF, Siefert JL (2002) Life and the evolution of the Earth's atmosphere. Science 296:1066–1068

    CAS  Google Scholar 

  • König HL (1974) Behavioural changes in human subjects associated with ELF electric fields. In: Persinger MA (ed) ELF and VLF electromagnetic field effects. Springer, Boston

    Google Scholar 

  • König HL, Krueger AP, Lang S, Sönning W (1981) biologic effects of environmental electromagnetism, topics in environmental physiology and medicine. Springer-Verlag, New York, p 332. https://doi.org/10.1007/978-1-4612-5859-9

    Book  Google Scholar 

  • McNutt SR, Williams ER (2010) Volcanic lightning: global observations and constraints on source mechanisms. Bull Volcanol 72:1153–1167

    Google Scholar 

  • Molle M, Marshall L, Fehm HL, Born J (2002) EEG theta synchronization conjoined with alpha desynchronization indicate intentional encoding. Eur J Neurosci 15:923–928

    Google Scholar 

  • Neiman AX, Ping D, Russell W, Wojtenek L, Wilkens F, Moss HA, Braun MT, Huber K, Voigt (1999) Synchronization of the noisy electrosensitive cells in the paddlefish, Phys Rev Lett. 82, 660

  • Nunes PL, Reid L, Bickford RG (1978) The relationship of head size to alpha frequency with implications to a brain wave model. Electroenc.Clin.Neurophys. 44:344–352

    Google Scholar 

  • Nunez PL (1981) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, New York

    Google Scholar 

  • Price C, Melnikov A (2004) Diurnal, seasonal and interannual variations in the Schumann resonance parameters. J Atmos Sol Terr Phys 66:1179–1185

    Google Scholar 

  • Reiter R (1953) Neuere Untersuchungen zum Problem der Wetterabhängigkeit des Menschen, Arch Meteor Geophys Bioklim. B4, 327

  • Roldugin VC, Maltsev YP, Vasiljev AN, Schokotov AY, Belyajev GG (2004) Schumann resonance frequency increase during solar X-ray bursts. J Geophys Res 109:A01216. https://doi.org/10.1029/2003JA010019

    Article  Google Scholar 

  • Rosenblum MG, Pikovsky AS, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76:1804–1807

    CAS  Google Scholar 

  • Sátori G (1996) Monitoring Schumann resonances II. Daily and seasonal frequency variations. J Atmos Terr Phys 58:1483–1488

    Google Scholar 

  • Scalia M, Sperini M, Guidi F (2012) The Johnson noise in biological matter. Mathematical Problems in Engineering , Article ID 582126, 11 pages. https://doi.org/10.1155/2012/582126

  • Schäfer C, Rosenblum M, Kurths J, Abel H (1998) Heartbeat synchronized with ventilation. Nature 392:239–240

    Google Scholar 

  • Schumann WO (1952) Uber die strahlungslosen eigenschwingungen einer leitenden kugel, die von einer luftschicht und einer ionospharenhulle umgeben ist. Z Naturforsch 7a:149

    Google Scholar 

  • Segal Y, Segal L, Blumenfeld-Katzir T, Sasson E, Poliansky V, Loeb E et al (2016a) The effect of electromagnetic field treatment on recovery from ischemic stroke in a rat stroke model – clinical, Imaging and Pathological Findings. Stroke Res Treat. https://doi.org/10.1155/2016/6941946

  • Segal Y, Segal L, Shohami E, Sasson E, Blumenfeld-Katzir T et al (2016b) The effect of electromagnetic field treatment on recovery from spinal cord injury in a rat model – clinical and imaging findings. Int J Neurorehabilitation 3:1000203. https://doi.org/10.4172/2376-0281.1000203

    Article  Google Scholar 

  • Sentman DD (1995) Schumann resonances. In: Volland, H, ed. Handbook of Atmospheric Electrodynamics, vol 1. Boca Raton, FL: CRC Press. 267–295

  • Soen Y, Cohen N, Lipson D, Braun E (1999) Emergence of spontaneous rhythm disorders in self-assembled networks of heart cells. Phys Rev Lett 82:3556–3559

    CAS  Google Scholar 

  • Strogatz SH, Stewart I (1993) Coupled oscillators and biological synchronization. Sci Am 269:102–109

    CAS  Google Scholar 

  • Tass P, Rosenblum M, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund H (1998) Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett 81:3291–3294

    CAS  Google Scholar 

  • Urey H (1952) The early chemical history of the earth and the origin of life. Proc Natl Acad Sci U S A 38:351–363

    CAS  Google Scholar 

  • Wever R (1970) The effect of electric fields on circadian rhythms in men. Life Sci Space Res 8:177–187

    CAS  Google Scholar 

  • Wever R (1973) Human circadian rhythms under the influence of weak electric fields and the different aspects of these studies. Int J Biometeorol 17:227–232

    CAS  Google Scholar 

  • Winfree AT (1980) The geometry of biological time. Springer, New York

    Google Scholar 

Download references

Acknowledgments

This paper is a result of years of discussions among the authors, and we would like to acknowledge Dave Sentman who tragically died before this paper could reach publication. We would also like to thank the EU COST action ELECTRONET for reviving the interest in this topic and supporting travel to meetings to discuss these research issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Price.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dave Sentman is deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Price, C., Williams, E., Elhalel, G. et al. Natural ELF fields in the atmosphere and in living organisms. Int J Biometeorol 65, 85–92 (2021). https://doi.org/10.1007/s00484-020-01864-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-01864-6

Keywords

Navigation