Skip to main content
Log in

Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain)

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Achieving optimal body temperature maximizes animal fitness. Since ambient temperature may limit ectotherm thermal performance, it can be constrained in too cold or hot environments. In this sense, elevational gradients encompass contrasting thermal environments. In thermally pauperized elevations, ectotherms may either show adaptations or suboptimal body temperatures. Also, reproductive condition may affect thermal needs. Herein, we examined different thermal ecology and physiology capabilities of the lizard Psammodromus algirus along a 2200-m elevational gradient. We measured field (Tb) and laboratory-preferred (Tpref) body temperatures of lizards with different reproductive conditions, as well as ambient (Ta) and copper-model operative temperature (Te), which we used to determine thermal quality of the habitat (de), accuracy (db), and effectiveness of thermoregulation (de–db) indexes. We detected no Tb trend in elevation, while Ta constrained Tb only at high elevations. Moreover, while Ta decreased more than 7 °C with elevation, Tpref dropped only 0.6 °C, although significantly. Notably, low-elevation lizards faced excess temperature (Te > Tpref). Notably, de was best at middle elevations, followed by high elevations, and poorest at low elevations. Nonetheless, regarding microhabitat, high-elevation de was more suitable in sun-exposed microhabitats, which may increase exposition to predators, and at midday, which may limit daily activity. As for gender, db and de–db were better in females than in males. In conclusion, P. algirus seems capable to face a wide thermal range, which probably contributes to its extensive corology and makes it adaptable to climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adolph SC, Porter WP (1993) Temperature, activity, and lizard life histories. Am Nat 142:273–295

    Article  CAS  Google Scholar 

  • Aguado S, Braña F (2014) Thermoregulation in a cold-adapted species (Cyren’s Rock Lizard, Iberolacerta cyreni): influence of thermal environment and associated costs. Can J Zool 92:955–964

    Article  Google Scholar 

  • Alford JG, Lutterschmidt WI (2012) Modeling energetic and theoretical costs of thermoregulatory strategy. J Biol Dyn 6:63–69

    Article  Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis, 1st edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bakken GS, Angilletta MJ (2014) How to avoid errors when quantifying thermal environments. Funct Ecol 28:96–107

    Article  Google Scholar 

  • Belliure J, Carrascal LM (2002) Influence of heat transmission mode on heating rates and on the selection of patches for heating in a Mediterranean lizard. Physiol Biochem Zool 75:369–376

    Article  Google Scholar 

  • Beuchat CA (1986) Reproductive influences on the thermoregulatory behavior of a live-bearing lizard. Copeia 1986:971–979

    Article  Google Scholar 

  • Blouin-Demers G, Nadeau P (2005) The cost-benefit model of thermoregulation does not predict lizard thermoregulation behavior. Ecology 86:560–566

    Article  Google Scholar 

  • Blouin-Demers G, Weatherhead PJ (2001) Thermal ecology of black rat snakes (Elaphe obsoleta) in a thermally challenging environment. Ecology 82:3025–3043

    Article  Google Scholar 

  • Braña F (1993) Shifts in body temperature and escape behaviour of female Podarcis muralis during pregnancy. Oikos 66:216–222

    Article  Google Scholar 

  • Brewster CL, Sikes RS, Gifford ME (2013) Quantifying the cost of thermoregulation: thermal and energetic constraints on growth rates in hatchling lizards. Funct Ecol 27:490–497

    Article  Google Scholar 

  • Brown RP, Au T (2009) The influence of metabolic heat on body temperature of a small lizard, Anolis carolinensis. Comp Biochem Physiol A 153:181–184

    Article  Google Scholar 

  • Carrascal LM, López P, Martín J, Salvador A (1992) Basking and antipredator behaviour in a high altitude lizard: implications of heat-exchange rate. Ethology 92:143–154

    Article  Google Scholar 

  • Carter AJ, Goldizen AW, Tromp SA (2010) Agamas exhibit behavioral syndromes: bolder males bask and feed more but may suffer higher predation. Behav Ecol 21:655–661

    Article  Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  Google Scholar 

  • Clusella-Trullas S, van Wyk JH, Spotila JR (2007) Thermal melanism in ectotherms. J Therm Biol 32:235–245

    Article  Google Scholar 

  • Crowley SR (1985) Thermal sensitivity of sprint-running in the lizard Sceloporus undulatus: support for a conservative view of thermal physiology. Oecologia 66:219–225

    Article  Google Scholar 

  • Díaz JA (1997) Ecological correlates of the thermal quality of an ectotherm’s habitat: a comparison between two temperate lizard populations. Funct Ecol 11:79–89

    Article  Google Scholar 

  • Díaz JA, Cabezas-Díaz S (2004) Seasonal variation in the contribution of different behavioural mechanisms to lizard thermoregulation. Funct Ecol 18:867–875

    Article  Google Scholar 

  • Díaz JA, Iraeta P, Monasterio C (2006) Seasonality provokes a shift of thermal preferences in a temperate lizard, but altitude does not. J Therm Biol 31:237–242

    Article  Google Scholar 

  • Du W, Lu Y, Shen J (2005) The influence of maternal thermal environments on reproductive traits and hatchling traits in a Lacertid lizard. J Therm Biol 30:153–161

    Article  Google Scholar 

  • Dzialowski EM (2005) Use of operative temperature and standard operative temperature models in thermal biology. J Therm Biol 30:317–334

    Article  Google Scholar 

  • Fei T, Skidmore AK, Venus V, Wang T, Schlerf M, Toxopeus B, van Overjijk S, Bian M, Liu Y (2012) A body temperature model for lizards as estimated from the thermal environment. J Therm Biol 37:56–64

    Article  Google Scholar 

  • Gilchrist GW (1995) Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am Nat 146:252–270

    Article  Google Scholar 

  • Grant BW, Dunham AE (1990) Elevational covariation in environmental constraints and life histories of the desert lizard Sceloporus merriami. Ecology 71:1765–1776

    Article  Google Scholar 

  • Gvoždík L (2002) To heat or to save time? Thermoregulation in the lizard Zootoca vivipara (Squamata: Lacertidae) in different thermal environments along an altitudinal gradient. Can J Zool 80:479–492

    Article  Google Scholar 

  • Herczeg G, Gonda A, Saarikivi J, Merilä J (2006) Experimental support for the cost–benefit model of lizard thermoregulation. Behav Ecol Sociobiol 60:405–414

    Article  Google Scholar 

  • Herczeg G, Saarikivi J, Gonda A, Perälä J, Tuomola A, Merilä J (2007) Suboptimal thermoregulation in male adders (Vipera berus) after hibernation imposed by spermiogenesis. Biol J Linn Soc 92:19–27

    Article  Google Scholar 

  • Hertz PE (1992) Temperature regulation in Puerto Rican Anolis lizards: a field test using null hypotheses. Ecology 73:1405–1417

    Article  Google Scholar 

  • Hertz PE, Huey RB (1981) Compensation for altitudinal changes in the thermal environment by some Anolis lizards on Hispaniola. Ecology 62:515–521

    Article  Google Scholar 

  • Hertz PE, Huey RB, Nevo E (1983) Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution 37:1075–1084

    Article  Google Scholar 

  • Hertz PE, Huey RB, Stevenson RD (1993) Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat 142:796–818

    Article  CAS  Google Scholar 

  • Huey RB, Slatkin M (1976) Costs and benefits of lizard thermoregulation. Quart Rev Biol 51:363–384

    Article  CAS  Google Scholar 

  • Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus behavioral inertia in evolution: a null model approach. Am Nat 161:357–366

    Article  Google Scholar 

  • Ibargüengoytía NR, Acosta JC, Boretto JM, Villavicencio HJ, Marinero JA, Krenz JD (2008) Field thermal biology of Phymaturus lizards: comparisons from the Andes to the Patagonian steppe in Argentina. J Arid Environ 72:1620–1630

    Article  Google Scholar 

  • Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. PNAS 106:3835–3840

    Article  CAS  Google Scholar 

  • Lara-Reséndiz RA, Larraín-Barrios BC, Díaz de la Vega-Pérez AH, Méndez-de la Cruz FR (2014) Calidad térmica a través de un gradiente altitudinal para una comunidad de lagartijas en la sierra del Ajusco y el Pedregal de San Ángel, México. Rev Mex Biodiv 85:885–897

    Article  Google Scholar 

  • Le Galliard JF, Le Bris M, Clobert J (2003) Timing of locomotor impairment and shift in thermal preferences during gravidity in a viviparous lizard. Funct Ecol 17:877–885

    Article  Google Scholar 

  • Lin CX, Zhang L, Ji X (2008) Influence of pregnancy on locomotor and feeding performances of the skink, Mabuya multifasciata: why do females shift thermal preferences when pregnant? Zoology 111:188–195

    Article  Google Scholar 

  • Marler CA, Walsberg G, White ML, Moore M (1995) Increased energy expenditure due to increased territorial defense in male lizards after phenotypic manipulation. Behav Ecol Sociobiol 37:225–231

    Article  Google Scholar 

  • Martín J, López P (2000) Fleeing to unsafe refuges: effects of conspicuousness and refuge safety on the escape decisions of the lizard Psammodromus algirus. Can J Zool 78:265–270

    Article  Google Scholar 

  • Mathies T, Andrews RM (1997) Influence of pregnancy on the thermal biology of the lizard, Sceloporus jarrovi: why do pregnant females exhibit low body temperatures? Funct Ecol 11:498–507

    Article  Google Scholar 

  • McConnachie S, Alexander GJ (2004) The effect of temperature on digestive and assimilation efficiency, gut passage time and appetite in an ambush foraging lizard, Cordylus melanotus melanotus. J Comp Physiol B 174:99–105

    Article  CAS  Google Scholar 

  • Moreno Azócar DL, Bonino MF, Perotti MG, Abdala CS, Schulte JA, Cruz FB (2013) Chasing the Patagonian sun: comparative thermal biology of Liolaemus lizards. Oecologia 171:773–788

    Article  Google Scholar 

  • Moreno-Rueda G, Pleguezuelos JM, Alaminos E (2009) Climate warming and activity period extension in the Mediterranean snake Malpolon monspessulanus. Clim Chang 92:235–242

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. 1st ed. Cambridge University Press

  • R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reguera S, Zamora-Camacho FJ, Moreno-Rueda G (2014) The lizard Psammodromus algirus (Squamata: Lacertidae) is darker at high altitudes. Biol J Linn Soc 112:132–141

    Article  Google Scholar 

  • Rodríguez-Serrano E, Navas CA, Bozinovic F (2009) The comparative field body temperature among Liolaemus lizards: testing the static and the labile hypotheses. J Therm Biol 34:306–309

    Article  Google Scholar 

  • Salvador A (2011) Lagartija colilarga—Psammodromus algirus (Linnaeus, 1758). In Salvador A, Marco A (eds) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/

  • Schwarzkopf L, Shine R (1991) Thermal biology of reproduction in viviparous skinks, Eulamprus tympanum: why do gravid females bask more? Oecologia 88:562–569

    Article  Google Scholar 

  • Shine R (2003) Locomotor speed of gravid lizards: placing ‘costs of reproduction’ within an ecological context. Funct Ecol 17:526–533

    Article  Google Scholar 

  • Shine R, Harlow PS (1993) Maternal thermoregulation influences offspring viability in a viviparous lizard. Oecologia 96:122–127

    Article  Google Scholar 

  • Shine R, Harlow PS, Elphick MJ, Olsson MM, Mason RT (2000) Conflicts between courtship and thermoregulation: the thermal ecology of amorous male garter snakes (Thamnophis sirtalis parietalis, Colubridae). Physiol Biochem Zool 73:508–516

    Article  CAS  Google Scholar 

  • Sinervo B, Méndez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans B, Villagrán-Santa Cruz M, Lara-Resendiz R, Martínez-Méndez N, Calderón-Espinosa ML, Meza-Lázaro RN, Gadsden H, Ávila LJ, Morando M, De la Riva IJ, Sepúlveda PV, Duarte Rocha CF, Ibargüengoytía N, Puntriano CA, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J, Sites JW (2010) Erosion of lizard diversity by Climate Change and altered thermal niches. Science 328:894–899

    Article  CAS  Google Scholar 

  • Stevens GC (1992) The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. Am Nat 140:893–911

    Article  CAS  Google Scholar 

  • Sun Y, Du Y, Yang J, Lin C, Ji X (2012) Climatic correlates of female and male reproductive cycles and plasma steroid hormone levels in the many-lined sun skink Eutropis multifasciata. Gen Comp Endocrinol 178:363–371

    Article  CAS  Google Scholar 

  • Sunday JM, Bates AE, Dulvy NK (2010) Global analysis of thermal tolerance and latitude in ectotherms. Proc R Soc B 278:1823–1830

    Article  Google Scholar 

  • Truter JC, van Wyk JH, Mouton PFN (2014) An evaluation of daily, seasonal and population-level variation in the thermal preference of a group-living lizard, Ouroborus cataphractus (Sauria: Cordylidae). Amphibia-Reptilia 35:391–403

    Article  Google Scholar 

  • Valdecantos S, Martínez V, Lobo F, Cruz FB (2013) Thermal biology of Liolaemus lizards from the high Andes: being efficient despite adversity. J Therm Biol 38:126–134

    Article  Google Scholar 

  • Verwaijen D, Van Damme R (2007) Correlated evolution of thermal characteristics and foraging strategy in lacertid lizards. J Therm Biol 32:388–395

    Article  Google Scholar 

  • Vickers M, Manicom C, Schwarzkopf L (2011) Extending the cost-benefit model of thermoregulation: high-temperature environments. Am Nat 177:452–461

    Article  Google Scholar 

  • Xiang J, Weiguo D, Pingyue S (1996) Body temperature, thermal tolerance and influence of temperature on sprint speed and food assimilation in adult grass lizards, Takydromus septentrionalis. J Therm Biol 21:155–161

    Article  Google Scholar 

  • Yu D, Guo-Hua D, Yan-Yan S, Xiang J (2008) Northern grass lizard (Takydromus septentrionalis; Lacertidae) shift thermal preferences when fasted. Acta Zool Sin 54:739–743

  • Zamora-Camacho FJ, Reguera S, Moreno-Rueda G, Pleguezuelos JM (2013) Patterns of seasonal activity in a Mediterranean lizard along a 2200 m altitudinal gradient. J Therm Biol 38:64–69

    Article  Google Scholar 

  • Zamora-Camacho FJ, Reguera S, Moreno-Rueda G (2014a) Bergmann’s Rule rules body size in an ectotherm: heat conservation in a lizard along a 2200-meter elevational gradient. J Evol Biol 27:2820–2828

    Article  CAS  Google Scholar 

  • Zamora-Camacho FJ, Reguera S, Rubiño-Hispán MV, Moreno-Rueda G (2014b) Effects of limb length, body mass, gender, gravidity, and elevation on escape speed in the lizard Psammodromus algirus. Evol Biol 41:509–517

    Article  Google Scholar 

  • Zamora-Camacho FJ, Rubiño-Hispán MV, Reguera S, Moreno-Rueda G (2015) Thermal dependence of sprint performance in the lizard Psammodromus algirus along a 2200-meter elevational gradient: cold-habitat lizards do not perform better at low temperatures. J Therm Biol 52:90–96

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Ministerio de Ciencia e Innovación (project CGL2009-13185) and performed according to permits issued to the authors by Junta de Andalucía (references GMN/GyB/JMIF and ENSN/JSG/JEGT/MCF). FJZC and SR were supported by two pre-doctoral grants from the Ministerio de Ciencia e Innovación (FPU program). We thank the personnel from the Espacio Natural de Sierra Nevada for their constant support. María Virtudes Rubiño Hispán, MariCruz Tuset Arcas, Miguel Leandro López Gracia, Susana Silva González, Elena Melero Martínez, and Laureano González González-Granda helped us during field work. Comments by Juan Manuel Pleguezuelos and three anonymous reviewers improved the manuscript. David Nesbitt revised the English.

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. This article does not contain any studies with human participants performed by any of the authors. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Javier Zamora-Camacho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamora-Camacho, F.J., Reguera, S. & Moreno-Rueda, G. Thermoregulation in the lizard Psammodromus algirus along a 2200-m elevational gradient in Sierra Nevada (Spain). Int J Biometeorol 60, 687–697 (2016). https://doi.org/10.1007/s00484-015-1063-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-1063-1

Keywords

Navigation