Skip to main content
Log in

Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Cupressaceae includes species cultivated as ornamentals in the urban environment. This study aims to investigate airborne pollen data for Cupressaceae on the southwestern Iberian Peninsula over a 21-year period and to analyse the trends in these data and their relationship with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1993 to 2013 in Badajoz (SW Spain). The main pollen season for Cupressaceae lasted, on average, 58 days, ranging from 55 to 112 days, from 24 January to 22 March. Furthermore, a short-term forecasting model has been developed for daily pollen concentrations. The model proposed to forecast the airborne pollen concentration is described by one equation. This expression is composed of two terms: the first term represents the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term is obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological parameters multiplied by a fitting coefficient. Temperature was the main meteorological factor by its influence over daily pollen forecast, being the rain the second most important factor. This model represents a good approach to a continuous balance model of Cupressaceae pollen concentration and is supported by a close agreement between the observed and predicted mean concentrations. The novelty of the proposed model is the analysis of meteorological parameters that are not frequently used in Aerobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aerobiology IAo (2002) An epidemiological study of Cupressaceae pollinosis in Italy. J Investig Allergol Clin Immunol 12:287–292

    Google Scholar 

  • Aira MJ, Dopazo A, Jato MV (2001) Aerobiological monitoring of Cupressaceae pollen in Santiago de Compostela (NW Iberian Peninsula) over six years. Aerobiologia 17:319–325

    Article  Google Scholar 

  • Aira MJ, Rodríguez-Rajo FJ, Fernández-González M, Jato V (2011) Airborne pollen of ornamental tree species in the NW of Spain. Environ Monit Assess 173:765–775

    Article  Google Scholar 

  • Aznarte JL, Benítez-Sánchez JM, Lugilde DN, de Linares-Fernández C, Díaz de la Guardia C, Sánchez FA (2007) Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models. Expert Syst Appl 32:1218–1225

    Article  Google Scholar 

  • Brighetti MA, Costa C, Menesatti P, Antonucci F, Tripodi S, Travaglini A (2014) Multivariate statistical forecasting modeling to predict Poaceae pollen critical concentrations by meteoclimatic data. Aerobiologia 30:25–33

    Article  Google Scholar 

  • Caiaffa MF, Macchia L, Strada S, Bariletto G, Scarpelli F, Tursi A (1993) Airborne Cupressaceae pollen in southern Italy. Ann Allergy 71:45–50

    CAS  Google Scholar 

  • Calleja M, Farrera I (2003) Cypress: a new plague for the Rhone-Alpes region? Allergy Immunol (Paris) 35:92–96

    CAS  Google Scholar 

  • Cariñanos P, Alcázar P, Galán C, Domínguez E (2014) Environmental behaviour of airborne Amaranthaceae pollen in the southern part of the Iberian Peninsula, and its role in future climate scenarios. Sci Total Environ 470–471:480–487

    Article  Google Scholar 

  • Castellano-Méndez M, Aira MJ, Iglesias I, Jato V, González-Manteiga W (2005) Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air. Int J Biometeorol 49:310–316

    Article  Google Scholar 

  • Charpin D, Calleja M, Pichot C, Penel V, Hugues B, Poncet P (2013) Cypress pollen allergy. Rev Mal Respir 30:868–878

    Article  CAS  Google Scholar 

  • D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H et al (2007) Allergenic pollen and pollen allergy in Europe. Allergy Eur J Allergy Clin Immunol 62:976–990

    Article  Google Scholar 

  • Díaz de la Guardia C, Alba F, Nieto-Lugilde D, Lopez-Caballero J (2006) Aerobiological and allergenic analysis of Cupressaceae pollen in Granada (southern Spain). J Investig Allergol Clin Immunol 16:24–33

    Google Scholar 

  • Dotto CBS, Mannina G, Kleidorfer M, Vezzaro L, Henrichs M, McCarthy DT, Freni G, Rauch W, Deletic A (2012) Comparison of different uncertainty techniques in urban stormwater quantity and quality modelling. Water Res 46:2545–2558

    Article  CAS  Google Scholar 

  • Efstratiadis A, Koutsoyiannis D (2010) One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrol Sci J 55:58–78

    Article  CAS  Google Scholar 

  • Emberlin J, Savage M, Jones S (1993) Annual variations in grass pollen seasons in London 1961–1990: trends and forecast models. Clin Exp Allergy 23:911–918

    Article  CAS  Google Scholar 

  • Fuertes-Rodriguez CR, Gonzalez-Parrado Z, Vega-Maray AM, Valencia-Barrera RM, Fernandez-Gonzalez D (2007) Effect of air temperature on forecasting the start of Cupressaceae pollen type in Ponferrada (Leon, Spain). Ann Agric Environ Med 14:237–242

    Google Scholar 

  • Galán C, Fuillerat MJ, Comtois P, Dominguez-Vilches E (1998a) Bioclimatic factors affecting daily Cupressaceae flowering in southwest Spain. Int J Biometeorol 41:95–100

    Article  Google Scholar 

  • Galán C, Fuillerat MJ, Comtois P, Domínguez E (1998b) A predictive study of Cupressaceae pollen season onset, severity, maximum value and maximum value date. Aerobiologia 14:195–199

    Article  Google Scholar 

  • Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz-de La Guardia C, Trigo MM (2005) Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49:184–188

    Article  Google Scholar 

  • Galán, C, Cariñanos, P, Alcázar, P and Dominguez-Vilches, E (2007) Spanish Aerobiology Network (REA) Management and Quality Manual, Servicio de Publicaciones Universidad de Córdoba. ISBN 978-84-690-6353-8

  • García-Mozo H, Chuine I, Aira MJ, Belmonte J, Bermejo D, Díaz dela Guardia C, Elvira B, Gutiérrez M, Rodríguez-Rajo J, Ruiz L, Trigo MM, Tormo R, Valencia R, Galán C (2008) Regional phenological models for forecasting the start and peak of the Quercus pollen season in Spain. Agric For Meteorol 148(3):372–380

    Article  Google Scholar 

  • García-Mozo H, Yaezel L, Oteros J, Galán C (2014) Statistical approach to the analysis of olive long-term pollen season trends in southern Spain. Sci Total Environ 473–474:103–109

    Article  Google Scholar 

  • Geller-Bernstein C, Waisel Y, Lahoz C (2000) Environment and sensitization to cypress in Israel. Allergy Immunol (Paris) 32:92–93

    CAS  Google Scholar 

  • Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo-Orsini JA et al (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Hidalgo PJ, Galán C, Domínguez E (1999) Pollen production of the genus Cupressus. Grana 38:296–300

    Article  Google Scholar 

  • Hidalgo PJ, Galán C, Domínguez E (2003) Male phenology of three species of Cupressus: correlation with airborne pollen. Trees 17:336–344

    Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39(2):257–265

    Article  Google Scholar 

  • Ianovici N (2009) Aerobiological monitoring of Taxaceae/Cupressaceae pollen in Timisoara. J Hortic For Biotechnol 13:163–170

    Google Scholar 

  • Kawashima S, Takahashi Y (1999) An improved simulation of mesoscale dispersion of airborne cedar pollen using a flowering-time map. Grana 38:316–324

    Article  Google Scholar 

  • Levetin E (1998) A long-term study of winter and early spring tree pollen in the Tulsa, Oklahoma atmosphere. Aerobiologia 14:21–28

    Article  Google Scholar 

  • López-González, G (1986) XXIX Cupressacae. In Castroviejo, S, Laínz, M, López-González, G, Montserrat, P, Muñoz-Garmendia, F, Paiva, J and Villar, L (eds.) Flora Ibérica. Vol. I. Real Jardín Botánico de Madrid, Servicio de Publicaciones del CSIC, ISBN 84-00-06221-3 175–188

  • Moral A (2003) Aerobiología y polinosis por Cupresáceas en España. Alergol e Inmunologia Clín 18:25–35

    Google Scholar 

  • Nardi G, Canziani A, Striani P, Santini N, Coccia C, Seghetti L, Kranic R (1996) Cupressaceae pollen in the atmosphere of Ascoli Piceno (Central Italy) and sensitization of allergic subjects. Aerobiologia 12:269--271

  • Newnham RM, Sparks TH, Skjøth CA, Head K, Adams-Groom B, Smith M (2013) Pollen season and climate: is the timing of birch pollen release in the UK approaching its limit? Int J Biometeorol 57:391–400

    Article  CAS  Google Scholar 

  • Nilsson S, Persson S (1981) Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana 20:179–182

    Article  Google Scholar 

  • Ocana-Peinado FM, Valderrama MJ, Bouzas PR (2013) A principal component regression model to forecast airborne concentration of Cupressaceae pollen in the city of Granada (SE Spain), during 1995–2006. Int J Biometeorol 57:483–486

    Article  Google Scholar 

  • Oteros J, García-Mozo H, Hervás-Martínez C, Galán C (2013) Year clustering analysis for modelling olive flowering phenology. Int J Biometeorol 57:545–555

    Article  CAS  Google Scholar 

  • Papa G, Romano A, Quaratino D, Di Fonso M, Viola M, Cristina-Artesani M et al (2001) Prevalence of sensitization to Cupressus sempervirens: a 4-year retrospective study. Sci Total Environ 270:83–87

    Article  CAS  Google Scholar 

  • Ramos AP, Marques MJ, Fabiao A, Santos-Pereira J, Todo-Bom A, Fontes L, Neuparth N, da Mata PL (2000) Concentration of airborne pollen from Cupressaceae in Lisbon. Allergy Immunol (Paris) 32:109–110

    CAS  Google Scholar 

  • Ranzi A, Lauriola P, Marletto V, Zinoni F (2003) Forecasting airborne pollen concentrations: development of local models. Aerobiologia 19:39–45

    Article  Google Scholar 

  • Ribeiro H, Cunha M, Abreu I (2008) Quantitative forecasting of olive yield in northern Portugal using a bioclimatic model. Aerobiologia 24:141–150

    Article  Google Scholar 

  • Rodríguez de la Cruz D, Sánchez-Reyes E, Sánchez-Sánchez J (2015) A contribution to the knowledge of Cupressaceae airborne pollen in the middle west of Spain. Aerobiologia. doi:10.1007/s10453-015-9376-4

    Google Scholar 

  • Rodríguez-Rajo FJ, Frenguelli G, Jato MV (2003) Effect of air temperature on forecasting the start of the Betula pollen season at two contrasting sites in the south of Europe (1995–2001). Int J Biometeorol 47:117–125

    Google Scholar 

  • Rodríguez-Rajo FJ, Astray G, Ferreiro-Lage JA, Aira MJ, Jato-Rodriguez MV, Mejuto JC (2010) Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region. Neural Netw 23:419–425

    Article  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    Article  CAS  Google Scholar 

  • Sabariego S, Cuesta P, Fernández-González F, Pérez-Badía R (2012) Models for forecasting airborne Cupressaceae pollen levels in central Spain. Int J Biometeorol 56:253–258

    Article  Google Scholar 

  • Sánchez-Mesa JA, Galán C, Martínez-Heras JA, Hervás-Martínez C (2002) The use of a neural network to forecast daily grass pollen concentration in a Mediterranean region: the southern part of the Iberian Peninsula. Clin Exp Allergy 32:1606–1612

    Article  Google Scholar 

  • Šcevková J, Dušicka J, Micieta K, Somorcík J (2015) Diurnal variation in airborne pollen concentration of six allergenic tree taxa and its relationship with meteorological parameters. Aerobiologia 2015 online doi:10.1007/s10453-015-9379-1

  • Shahali Y, Poncet P, Sénéchal H (2013) Cupressaceae pollinosis and air pollution. Rev Fr d’Allergologie 53:468–472

    Article  Google Scholar 

  • Smith M, Emberlin J (2006) A 30-day-ahead forecast model for grass pollen in north London, United Kingdom. Int J Biometeorol 50:233–242

    Article  Google Scholar 

  • Stach A, García-Mozo H, Prieto-Baena JC, Czarnecka-Operacz M, Jenerowicz D, Silny W et al (2007) Prevalence of Artemisia species pollinosis in western Poland: impact of climate change on aerobiological trends, 1995–2004. J Investig Allergol Clin Immunol 17:39–47

    CAS  Google Scholar 

  • Stach A, Smith M, Prieto-Baena JC, Emberlin J (2008) Long-term and short-term forecast models for Poaceae (grass) pollen in Poznan, Poland, constructed using regression analysis. Environ Exp Bot 62:323–332

    Article  Google Scholar 

  • Staffolani L, Velasco-Jiménez MJ, Galán C, Hruska K (2011) Allergenicity of the ornamental urban flora: ecological and aerobiological analyses in Córdoba (Spain) and Ascoli Piceno (Italy). Aerobiologia 27:239–246

    Article  Google Scholar 

  • Subiza J, Jerez M, Jimenez JA, Narganes MJ, Cabrera M, Varela S et al (1995) Allergenic pollen pollinosis in Madrid. J Investig Allergol Clin Immunol 96:15–23

    Article  CAS  Google Scholar 

  • Tormo R, Silva I, Gonzalo Á, Moreno A, Pérez R, Fernández S (2011) Phenological records as a complement to aerobiological data. Int J Biometeorol 55:51–65

    Article  Google Scholar 

  • Torrigiani-Malaspina T, Cecchi L, Morabito M, Onorari M, Domeneghetti MP, Orlandini S (2007) Influence of meteorological conditions on male flower phenology of Cupressus sempervirens and correlation with pollen production in Florence. Trees Struct Funct 21:507–514

    Article  Google Scholar 

  • Van de Water P, Keever T, Main C, Levetin E (2003) An assessment of predictive forecasting of Juniperus ashei pollen movement in the southern Great Plains, USA. Int J Biometeorol 48:74–82

    Article  Google Scholar 

  • Vázquez LM, Galán C, Domínguez-Vilches E (2003) Influence of meteorological parameters on Olea pollen concentrations in Córdoba (south-western Spain). Int J Biometeorol 48:83–90

    Article  Google Scholar 

  • Velasco-Jiménez MJ, Alcázar P, Domínguez-Vilches E, Galán C (2013) Comparative study of airborne pollen counts located in different areas of the city of Córdoba (south-western Spain). Aerobiologia 29:113–120

    Article  Google Scholar 

  • Voukantsis D, Niska H, Karatzas K, Riga M, Damialis A, Vokou D (2010) Forecasting daily pollen concentrations using data-driven modeling methods in Thessaloniki, Greece. Atmos Environ 44:5101–5111

    Article  CAS  Google Scholar 

  • Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003) A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resour Res 39:SWC11–SWC116

    Google Scholar 

  • Waisel Y, Mienis Z, Kosman E, Geller-Bernstein C (2004) The partial contribution of specific airborne pollen to pollen induced allergy. Aerobiologia 20:197–208

    Article  Google Scholar 

  • Zhang Y, Isukapalli SS, Bielory L, Georgopoulos PG (2013) Bayesian analysis of climate change effects on observed and projected airborne levels of birch pollen. Atmos Environ 68:64–73

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was made possible by the research projects PRI06A190 and PRI BS10008 financed by the Regional Government, Junta de Extremadura (Spain) and the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Fernández-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Palacios, I., Fernández-Rodríguez, S., Durán-Barroso, P. et al. Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula. Int J Biometeorol 60, 297–306 (2016). https://doi.org/10.1007/s00484-015-1026-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-1026-6

Keywords

Navigation