Skip to main content
Log in

Chronischer Schmerz verändert die Struktur des Gehirns

Chronic pain alters the structure of the brain

  • Übersichten
  • Published:
Der Schmerz Aims and scope Submit manuscript

Zusammenfassung

Obwohl chronische Schmerzen und die Chronifizierung von Schmerz zu den häufigsten Herausforderungen einer Schmerzambulanz gehören, ist die Pathogenese chronischer Schmerzen weiterhin unklar. Neuere Ergebnisse zeigen hirnmorphologische Veränderungen bei Patienten mit chronischen Schmerzen im Sinne einer regional spezifischen Abnahme an grauer Substanz. Diese Veränderungen sind unabhängig vom Syndrom oder der anatomischen Projektion der Schmerzen und überlappen im vorderen und mittleren Cingulum, der vorderen Inselrinde, dem orbitofrontalen Kortex und dem Hirnstamm. Die Interpretation der Abnahme an grauer Substanz wird in der Literatur fälschlicherweise meist als Schädigung oder Atrophie des Gehirns interpretiert. Die funktionelle Relevanz dieser Hirnveränderung ist noch nicht klar, jedoch ist die Übereinstimmung der bisher publizierten Befunde verblüffend und deutet darauf hin, dass das sog. Schmerzgedächtnis visualisiert werden kann.

Abstract

Local morphologic alterations of the brain in areas ascribable to the transmission of pain were recently detected in patients suffering from phantom pain, chronic back pain, irritable bowl syndrome, fibromyalgia and frequent headaches. These alterations were different for each pain syndrome, but overlapped in the cingulate cortex, the orbit frontal cortex, the insula and dorsal pons. As it seems that chronic pain patients have a common “brain signature” in areas known to be involved in pain regulation, the question arises whether these changes are the cause or the consequence of chronic pain. The in vivo demonstration of a loss of brain gray matter in patients suffering from chronic pain compared to age and sex-matched healthy controls could represent the heavily discussed neuroanatomical substrate for pain memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin 30(5):263–288

    Article  CAS  PubMed  Google Scholar 

  2. May A (2009) New insights into headache: an update on functional and structural imaging findings. Nat Rev Neurosci 5(4):199–209

    Article  Google Scholar 

  3. May A (2009) Morphing voxels: the hype around structural imaging of headache patients. Brain 132(Pt 6):1419–1425

    Article  PubMed  Google Scholar 

  4. Ashburner J, Friston KJ (2001) Why voxel-based morphometry should be used. Neuroimage 14(6):1238–1243

    Article  CAS  PubMed  Google Scholar 

  5. May A (2006) A review of diagnostic and functional imaging in headache. J Headache Pain 7(4):174–184

    Article  PubMed  Google Scholar 

  6. May A, Gaser C (2006) Magnetic resonance-based morphometry: a window into structural plasticity of the brain. Curr Opin Neurol (in press)

  7. May A, Ashburner J, Buchel C et al (1999) Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nat Med 5(7):836–838

    Article  CAS  PubMed  Google Scholar 

  8. Woermann FG, Free SL, Koepp MJ et al (1999) Voxel-by-voxel comparison of automatically segmented cerebral gray matter – a rater-independent comparison of structural MRI in patients with epilepsy. Neuroimage 10(4):373–384

    Article  CAS  PubMed  Google Scholar 

  9. Karas GB, Scheltens P, Rombouts SA et al (2004) Global and local gray matter loss in mild cognitive impairment and Alzheimer’s disease. Neuroimage 23(2):708–716

    Article  CAS  PubMed  Google Scholar 

  10. Grossman M, McMillan C, Moore P et al (2004) What’s in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia and corticobasal degeneration. Brain 127(Pt 3):628–649

    Article  PubMed  Google Scholar 

  11. Apkarian AV, Sosa Y, Sonty S et al (2004) Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 24(46):10410–10415

    Article  CAS  PubMed  Google Scholar 

  12. Draganski B, Geisler P, Hajak G et al (2002) Hypothalamic gray matter changes in narcoleptic patients. Nat Med 8(11):1186–1188

    Article  CAS  PubMed  Google Scholar 

  13. Etgen T, Draganski B, Ilg C et al (2004) Bilateral thalamic gray matter changes in patients with restless legs syndrome. Neuroimage 24:1242–1247

    Article  PubMed  Google Scholar 

  14. Draganski B, Thun-Hohenstein C, Bogdahn U et al (2003) Motor circuit gray matter changes in idiopathic cervical dystonia. Neurology 61(9):1228–1231

    CAS  PubMed  Google Scholar 

  15. Kassubek J, Juengling FD, Hellwig B et al (2002) Thalamic gray matter changes in unilateral Parkinsonian resting tremor: a voxel-based morphometric analysis of 3-dimensional magnetic resonance imaging. Neurosci Lett 323(1):29–32

    Article  CAS  PubMed  Google Scholar 

  16. Kassubek J, Juengling FD, Kioschies T et al (2004) Topography of cerebral atrophy in early Huntington’s disease: a voxel based morphometric MRI study. J Neurol Neurosurg Psychiatry 75(2):213–220

    CAS  PubMed  Google Scholar 

  17. Gaser C, Schlaug G (2003) Brain structures differ between musicians and non-musicians. J Neurosci 23(27):9240–9245

    CAS  PubMed  Google Scholar 

  18. Draganski B, Gaser C, Busch V et al (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312

    Article  CAS  PubMed  Google Scholar 

  19. Driemeyer J, Boyke J, Gaser C et al (2008) Changes in gray matter induced by learning–revisited. PLoS ONE 3(7):e2669

    Article  PubMed  Google Scholar 

  20. Boyke J, Driemeyer J, Gaser C et al (2008) Training induced brain structure changes in the Elderly. J Neurosci 28:7031–7035

    Article  CAS  PubMed  Google Scholar 

  21. Teutsch S, Herken W, Bingel U et al (2008) Changes in brain gray matter due to repetitive painful stimulation. Neuroimage 42(2):845–849

    Article  CAS  PubMed  Google Scholar 

  22. May A, Ashburner J, Buchel C et al (1999) Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nat Med 5(7):836–838

    Article  CAS  PubMed  Google Scholar 

  23. Leone M, Franzini A, Broggi G, Bussone G (2006) Hypothalamic stimulation for intractable cluster headache: long-term experience. Neurology 67(1):150–152

    Article  PubMed  Google Scholar 

  24. Schmidt-Wilcke T, Leinisch E, Ganssbauer S et al (2006) Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 125(1–2):89–97

    Google Scholar 

  25. Schmidt-Wilcke T, Leinisch E, Straube A et al (2005) Gray matter decrease in patients with chronic tension type headache. Neurology 65(9):1483–1486

    Article  CAS  PubMed  Google Scholar 

  26. Draganski B, Moser T, Lummel N et al (2006) Decrease of thalamic gray matter following limb amputation. Neuroimage 31(3):951–957

    Article  CAS  PubMed  Google Scholar 

  27. Schmidt-Wilcke T, Ganssbauer S, Neuner T et al (2008) Subtle grey matter changes between migraine patients and healthy controls. Cephalalgia 28(1):1–4

    CAS  PubMed  Google Scholar 

  28. Matharu MS, Good CD, May A et al (2003) No change in the structure of the brain in migraine: a voxel-based morphometric study. Eur J Neurol 10(1):53–57

    Article  CAS  PubMed  Google Scholar 

  29. Rocca MA, Ceccarelli A, Falini A et al (2006) Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke 37(7):1765–1770

    Article  PubMed  Google Scholar 

  30. Valfre W, Rainero I, Bergui M, Pinessi L (2008) Voxel-based morphometry reveals gray matter abnormalities in migraine. Headache 48(1):109–117

    PubMed  Google Scholar 

  31. Wrigley PJ, Gustin SM, Macey PM et al (2008) Anatomical changes in human motor cortex and motor pathways following complete thoracic spinal cord injury. Cereb Cortex 19(1):224–232

    Article  PubMed  Google Scholar 

  32. Kuchinad A, Schweinhardt P, Seminowicz DA et al (2007) Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci 27(15):4004–4007

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt-Wilcke T, Luerding R, Weigand T et al (2007) Striatal grey matter increase in patients suffering from fibromyalgia - A voxel-based morphometry study. Pain 132:109–116

    Article  Google Scholar 

  34. Geha PY, Baliki MN, Harden RN et al (2008) The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron 60(4):570–581

    Article  CAS  PubMed  Google Scholar 

  35. Davis KD, Pope G, Chen J et al (2008) Cortical thinning in IBS: implications for homeostatic, attention, and pain processing. Neurology 70(2):153–154

    Article  CAS  PubMed  Google Scholar 

  36. Kim JH, Suh SI, Seol HY et al (2008) Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia 28(6):598–604

    Article  CAS  PubMed  Google Scholar 

  37. Boyke J, Driemeyer J, Gaser C et al (2008) Training-induced brain structure changes in the elderly. J Neurosci 28(28):7031–7035

    Article  CAS  PubMed  Google Scholar 

  38. Draganski B, Gaser C, Busch V et al (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427(6972):311–312

    Article  CAS  PubMed  Google Scholar 

  39. Bingel U, Herken W, Teutsch S, May A (2008) Habituation to painful stimulation involves the antinociceptive system – a 1-year follow-up of 10 participants. Pain 140(2):393–394

    Article  CAS  PubMed  Google Scholar 

  40. Good CD, Johnsrude IS, Ashburner J et al (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36

    Article  CAS  PubMed  Google Scholar 

  41. Hsu MC, Harris RE, Sundgren PC et al (2009) No consistent difference in gray matter volume between individuals with fibromyalgia and age-matched healthy subjects when controlling for affective disorder. Pain 143(3):262–267

    Article  PubMed  Google Scholar 

  42. Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288(5472):1765–1769

    Article  CAS  PubMed  Google Scholar 

  43. Flor H (2003) Cortical reorganisation and chronic pain: implications for rehabilitation. J Rehabil Med 41 (Suppl):66–72

    Article  PubMed  Google Scholar 

  44. Flor H, Denke C, Schaefer M, Grusser S (2001) Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 357(9270):1763–1764

    Article  CAS  PubMed  Google Scholar 

  45. May A (2008) Chronic pain may change the structure of the brain. Pain 137(1):7–15

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Diese Studie wurde von der DFG (MA 1862/2-3) und vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) des Bundesministeriums für Bildung und Forschung (BMBF) (Förderkennzeichen: 01EM0517) gefördert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. May.

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, A. Chronischer Schmerz verändert die Struktur des Gehirns. Schmerz 23, 569–575 (2009). https://doi.org/10.1007/s00482-009-0842-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00482-009-0842-1

Schlüsselwörter

Keywords

Navigation