Skip to main content
Log in

Does the plant economics spectrum change with secondary succession in the forest?

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Environmental filters select species with different characteristics. However, these do not exhibit the functional integration of the whole plant level.

Abstract

Functional integration at the whole plant level, between the strategies of the various plant organs, needs to be better elucidated to facilitate the understanding of species ecology over an environmental gradient. Thus, hypotheses were proposed that (1) if functional integration exists between organs, the leaf economic spectrum will be a good indicator of the plant economic spectrum, and that (2) processes of community assembly will change over a successional gradient, generating different economic spectra for the plant. To test these predictions, data on eight functional characteristics (leaf, reproductive, stem and whole plant) was collected in 65 species, distributed in six secondary growth forests (three with approximately 17 years and three with approximately 25 years of abandonment) and three mature forests, located within the dense ombrophilous forest domain in the northern coastal region of Pernambuco, Brazil. The results showed no influence of geographic distance (autocorrelation) or phylogeny. Positive correlations were observed between leaf nutrient concentration (N and P), and negative correlations were observed between leaf nutrient concentration and dry matter content. Functional integration at the whole plant level was not observed. On the primary axis of the principal components analysis, only leaf characteristics and wood density were coordinates, following the same strategy, whilst on the secondary axis, only leaf characteristics and maximum height were coordinates. The observed change in species composition and abundance over the gradient was sufficient for changes in the distribution of functional characteristics and, therefore in strategies, to be observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baraloto C, Paine CET, Poorter L, Beauchene J, Bonal D, Domenach A, Hérault B, Patiño S, Roggy J, Chave J (2010) Decoupled leaf and stem economics in rain forest trees. Ecol Lett 13:1338–1347

    Article  PubMed  Google Scholar 

  • Bazzaz FA, Pickett STA (1980) Physiological ecology of tropical succession: a comparative review. Annu Rev Ecol Syst 11:287–310

    Article  Google Scholar 

  • Bremner JM (1996) Nitrogen total. In: Sparks DL (ed) Methods of soil analysis. Part3. American Society of Agronomy, pp 1085–1121 (SSSA Book Series, 5)

  • Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological process and services. J Appl Ecol 48:1079–1087

    Article  Google Scholar 

  • Chave J (2005) Measuring wood density for tropical forest trees. A field manual for the CTFS sites. Universite Paul Sabatier, Toulouse

    Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in Coastal California. Ecol Monogr 79:109–126

    Article  Google Scholar 

  • Coste S, Baraloto C, Leroy C, Marcon E, Renaud A, Richardson AD, Roggy JC, Schimann H, Uddling J, Herault B (2010) Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Ann For Sci 67:607

    Article  Google Scholar 

  • CPRH-Companhia Pernambucana do Meio Ambiente (2003) Diagnóstico socioambiental do litoral norte de Pernambuco. Recife: CPRH

  • Craine JM (2005) Reconciling plant strategy theories of Grime and Tilman. J Ecol 93:1041–1052

    Article  Google Scholar 

  • Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V (2004) Darwin’s abominable mystery: insights from a supertree of the angiosperms. Proc Natl Acad Sci USA 101:1904–1909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortunel C, Fine PVA, Baraloto C (2012) Leaf, stem and root tissue strategies across 758 neotropical tree species. Funct Ecol 26:1153–1161

    Article  Google Scholar 

  • Freschet GT, Cornelissen JHC, Van Logtestijn RSP, Aerts R (2010) Evidence of the ‘plant economics spectrum’ in a subarctic flora. J Ecol 98:362–373

    Article  Google Scholar 

  • Fu PL, Jiang YJ, Wang AY, Brodribb TJ, Zhang JL, Zhu SD, Cao KF (2012) Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Ann Bot 110:189–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Golodets C, Sternberg M, Kigel J (2009) A community-level test of the leaf-height-seed ecology strategy scheme in relation to grazing conditions. J Veg Sci 20:392–402

    Article  Google Scholar 

  • Grime JP, Thompson K, Hunt R, Hodgson JG, Cornelissen JHC, Rorison IH, Hendry GAF, Ashenden TW, Askew AP, Band SR, Booth RE, Bossard CC, Campbell BD, Cooper JEL, Davison AW, Gupta PL, Hall W, Hand DW, Hannah MA, Hillier SH, Hodkinson DJ, Jalili A, Liu Z, Mackey JML, Matthews N, Mowforth MA, Neal AM, Reader RJ, Reiling K, Ross-Fraser W, Spencer RE, Sutton F, Tasker DE, Thorpe PC, Whitehouse J (1997) Integrated screening validates primary axes of specialisation in plants. Oikos 79:259–281

    Article  Google Scholar 

  • Houba VJG, Van der Lee JJ, Novazamsky I, Wallinga I (1989) Digestions and extractions. Soil and plant analysis, part 7. Plant analysis procedures. Wageningen Agricultural University, Wageningen, pp 12–35

    Google Scholar 

  • Ishida A, Nakano T, Yazaki K, Matsuki S, Koike N, Lauenstein DL, Shimizu M, Yamashita N (2008) Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms. Oecologia 156:193–202

    Article  PubMed  Google Scholar 

  • Kooyman RM, Westoby M (2009) Costs of height gain in rainforest saplings: main stem scaling, functional traits and strategy variation across 75 species. Ann Bot 104:987–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavorel S, Grigulis K, Mcintyre S, Williams NSG, Garden D, Dorrough J, Berman S, Quetier F, Thebault A, Bonis A (2007) Assessing functional diversity in the field—methodology matters! Funct Ecol 22:134–147

    Google Scholar 

  • Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138

    Article  Google Scholar 

  • Lohbeck M, Poorter L, Lebrija-Trejos E, Martínez-Ramos M, Meave JA, Paz H, Pérez-García EA, Romero-Pérez E, Tauro A, Bongers F (2013) Successional changes in functional composition contrast for dry and wet tropical Forest. Ecology 94:1211–1216

    Article  PubMed  Google Scholar 

  • Martinez-Vilalta J, Mencuccini M, Vayreda J, Retana J (2010) Interspecific variation in functional traits, not climatic differences among species ranges, determines demographic rates across 44 temperate and Mediterranean tree species. J Ecol 98:1462–1475

    Article  Google Scholar 

  • Mason NWH, Richardson SJ, Peltzer DA, Bello F, Wardle DA, Allen RB (2012) Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. J Ecol 100:678–689

    Article  CAS  Google Scholar 

  • Mccune B, Grace JB (2002) Analysis of ecological communities. MjM Software, Gleneden Beach. (www.pcord.com)

  • Mccune B, Mefford MJ (2011) PC-ORD: Multivariate analysis of ecological data version 6. MjM Software, Gleneden Beach

    Google Scholar 

  • Méndez-Alonzo R, Paz H, Zuluaga RC, Rosell JA, Olson AE (2012) Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology 93:2397–2406

    Article  PubMed  Google Scholar 

  • Mouchet MA, Villeger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876

    Article  Google Scholar 

  • Nascimento LM, Sampaio EVSB, Rodal MJN, Lins-E-Silva ACB (2012) Natural forest regeneration in abandoned sugarcane fields in northeastern Brazil: floristic changes. Biota Neotropica 12:1–14

    Article  Google Scholar 

  • Nascimento LM, Sampaio EVSB, Rodal MJN, Lins-E-Silva ACB (2014) Secondary succession in a fragmented Atlantic Forest landscape: evidence of structural and diversity convergence along a chronosequence. J For Res 19:501–513

    Article  Google Scholar 

  • O’Neal ME, Landis DA, Isaacs R (2002) An inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis. J Econ Entomol 95:1190–1194

    Article  PubMed  Google Scholar 

  • Pérez-Ramos IM, Roumet C, Cruz P, Blanchard A, Autran P, Garnier E (2012) Evidence for a ‘plant community economics spectrum’ driven by nutrient and water limitations in a Mediterranean rangeland of southern France. J Ecol 100:1315–1327

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional Diversity (FD), species richness, and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Pickett STA, Cadenasso ML (2005) Vegetation succession. In: Ecology Vegetation (ed) van der Marrel E. Blackwell Publishing, Malden, pp 172–198

    Google Scholar 

  • Pla L, Casanoves F, Rienzo JAD (2011) Cuantificación de la diversidad funcional. In: Casanoves F, Pla L, Rienzo JAD (eds) Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos. CATIE, Turrialba, CR, pp 33–47

    Google Scholar 

  • Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra-Manríquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008) Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology 89:1908–1920

    Article  CAS  PubMed  Google Scholar 

  • Poorter H, Niinemets U, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. Version 3.0.2. Vienna: R Foundation for Statistical Computing. Disponível em:<http://www.r-project.org> Acesso em: 07 dez. 2013

  • Rabelo FRC, Lins-e-Silva ACB, Rodal MJN (2015) Dinâmica da vegetação em um fragmento de Mata Atlântica no nordeste do Brasil. Ciência Florestal 25:23–36

    Article  Google Scholar 

  • Reich PB, Wright IJ, Cavender-Bares J, Craine MJ, Oleksyn J, Westoby M, Walters MB (2003) The evolution of plant functional variation: traits, spectra, and strategies. Int J Plant Sci 164(3 Suppl.):S143–S164

    Article  Google Scholar 

  • Reich PB, Oleksyn J, Wright IJ (2009) Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160:207–212

    Article  PubMed  Google Scholar 

  • Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ (2010) Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc R Soc Lond 277:877–883

    Article  CAS  Google Scholar 

  • Rozendaal DMA, Hurtado VH, Poorter L (2006) Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Funct Ecol 20:207–216

    Article  Google Scholar 

  • Schessl M, Silva WL, Gottsberger G (2008) Effects of fragmentation on forest structure and litter dynamics in Atlantic rainforest in Pernambuco, Brazil. Flora 203:215–228

    Article  Google Scholar 

  • Schleicher A, Peppler-Lisbach C, Kleyer M (2011) Functional traits during succession: is plant community assembly trait-driven? Preslia 83:347–370

    Google Scholar 

  • Swenson NG, Enquist BJ (2007) Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am J Bot 94:451–459

    Article  PubMed  Google Scholar 

  • Thompson K, Band SR, Hodgson JG (1993) Seed size and shape predict persistence in soil. Funct Ecol 7:236–241

    Article  Google Scholar 

  • Trindade MB, Lins-E-Silva ACB, Silva HP, Filgueira SB, Schessl M (2008) Fragmentation of the Atlantic rainforest in the Northern coastal region of Pernambuco, Brazil: recent changes and implications for conservation. Biorem Biodiv Bioavail 2:5–13

    Google Scholar 

  • Trugilho PF, Silva DA, Frazão FJL, Matos JLM (1990) Comparação de métodos de determinação da densidade básica em madeira. Acta Amaz 20:307–319

    Google Scholar 

  • Veloso HP, Rangel-Filho ALR, Lima JCA (1991) Classificação da vegetação brasileira, adaptada a um sistema universal. IBGE, Rio de Janeiro

    Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301

    Article  PubMed  Google Scholar 

  • Violle C, Navas M, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  • Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183

    Article  Google Scholar 

  • Weiher E, Van Der Werf A, Thompson K, Roderick M, Garnier E, Eriksson O (1999) Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci 10:609–620

    Article  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    Article  CAS  Google Scholar 

  • Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends Ecol Evol 21:261–268

    Article  PubMed  Google Scholar 

  • Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

  • Wright IJ, Falster DS, Pickup M, Westoby M (2006) Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiol Plant 127:445–456

    Article  CAS  Google Scholar 

  • Wright SJ, Kitajima K, Kraft NJ, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, Engelbrecht BM, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, Salvador CM, Zanne AE (2010) Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91:3664–3674

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Amanda Menezes Silva.

Additional information

Communicated by E. Beck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, M.A.M., Pinto, A.d.V.F., do Nascimento, L.M. et al. Does the plant economics spectrum change with secondary succession in the forest?. Trees 29, 1521–1531 (2015). https://doi.org/10.1007/s00468-015-1232-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1232-1

Keywords

Navigation