Skip to main content

Advertisement

Log in

Influence of micro-site conditions on tree-ring climate signals and trends in central and northern Sweden

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Tree-ring chronologies are important indicators of pre-instrumental, natural climate variability. Some of the longest chronologies are from northern Fennoscandia, where ring width measurement series from living trees are combined with series from sub-fossil trees, preserved in shallow lakes, to form millennial-length records. We here assess the recent ends of such timeseries by comparing climate signals and growth characteristics in central and northern Sweden, of (1) trees growing at lakeshore micro-sites (representing the source of sub-fossil material of supra-long chronologies), with (2) trees collected in dryer micro-sites several meters “inland”. Calibration trials reveal a predominating June–September temperature signal in N-Sweden and a weaker but significant May–September precipitation signal in C-Sweden. At the micro-site level, the temperature signal in N-Sweden is stronger in the lakeshore trees compared to the inland trees, whereas the precipitation signal in C-Sweden remains unchanged among the lakeshore and inland trees. Tree-rings at cambial ages >40 years are also substantially wider in the lakeshore micro-site in C-Sweden, and juvenile rings are more variable (and wider) in the dryer micro-site in N-Sweden (compared to the adjacent micro-sites). By combining the data of the various micro-sites with relict samples spanning the past 1,000 years, we demonstrate that growth rate differences at the micro-site scale can affect the low frequency trends of millennial-length chronologies. For the supra-long chronologies from northern Fennoscandia, that are derived from sub-fossil lake material, it is recommended to combine these data with measurement series from only lakeshore trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393(6684):450–455

    Article  CAS  Google Scholar 

  • Büntgen U, Bellwald I, Kalbermatten H, Schmidhalter M, Frank DC, Freund H, Bellwald W, Neuwirth B, Nusser M, Esper J (2006) 700 years of settlement and building history in the Lotschental, Switzerland. Erdkunde 60(2):96–112

    Article  Google Scholar 

  • Büntgen U, Frank DC, Kaczka RJ, Verstege A, Zwijacz-Kozica T, Esper J (2007) Growth responses to climate in a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiol 27(5):689–702

    Article  PubMed  Google Scholar 

  • Büntgen U, Franke J, Frank D, Wilson R, Gonzalez-Rouco F, Esper J (2010) Assessing the spatial signature of European climate reconstructions. Clim Res 41(2):125–130. doi:10.3354/Cr00848

    Article  Google Scholar 

  • Christiansen B, Ljungqvist FC (2012) The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability. Clim Past 8(2):765–786. doi:10.5194/cp-8-765-2012

    Article  Google Scholar 

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7(3):361–370

    Article  Google Scholar 

  • Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The segment length curse in long tree-ring chronology development for paleoclimatic studies. Holocene 5(2):229–237

    Article  Google Scholar 

  • D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res Atmos 111(D3). doi:10.1029/2005jd006352

  • Drobyshev I, Niklasson M, Linderholm HW, Seftigen K, Hickler T, Eggertsson O (2011) Reconstruction of a regional drought index in southern Sweden since AD 1750. Holocene 21(4):667–679. doi:10.1177/0959683610391312

    Article  Google Scholar 

  • Eronen M, Zetterberg P, Briffa KR, Lindholm M, Merilainen J, Timonen M (2002) The supra-long Scots pine tree-ring record for Finnish Lapland: part 1, chronology construction and initial inferences. Holocene 12(6):673–680. doi:10.1191/0959683602hl580rp

    Article  Google Scholar 

  • Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295(5563):2250–2253

    Article  PubMed  CAS  Google Scholar 

  • Esper J, Cook ER, Krusic PJ, Peters K, Schweingruber FH (2003) Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree Ring Res 59(2):81–98

    Google Scholar 

  • Esper J, Frank DC, Wilson RJS, Briffa KR (2005) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 32(7). doi:10.1029/2004gl021236

  • Esper J, Frank D, Büntgen U, Verstege A, Hantemirov RM, Kirdyanov AV (2010) Trends and uncertainties in Siberian indicators of 20th century warming. Glob Change Biol 16(1):386–398. doi:10.1111/j.1365-2486.2009.01913.x

    Article  Google Scholar 

  • Esper J, Benz M, Pederson N (2012a) Influence of wood harvest on tree-ring time-series of Picea abies in a temperate forest. Forest Ecol Manag 284:86–92. doi:10.1016/j.foreco.2012.07.047

    Article  Google Scholar 

  • Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher J, Holzkamper S, Fischer N, Wagner S, Nievergelt D, Verstege A, Buntgen U (2012b) Orbital forcing of tree-ring data. Nat Clim Change 2(12):862–866. doi:10.1038/Nclimate1589

    Article  Google Scholar 

  • Frank D, Esper J, Cook ER (2007) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34(16). doi:10.1029/2007gl030571

  • Fritts HC (1976) Tree rings and climate. Academic Press, New York

    Google Scholar 

  • Grudd H, Briffa KR, Karlen W, Bartholin TS, Jones PD, Kromer B (2002) A 7400-year tree-ring chronology in northern Swedish Lapland: natural climatic variability expressed on annual to millennial timescales. Holocene 12(6):657–665. doi:10.1191/0959683602hl578rp

    Article  Google Scholar 

  • Helama S, Lindholm M (2003) Droughts and rainfall in south-eastern Finland since AD 874, inferred from Scots pine ring-widths. Boreal Environ Res 8(2):171–183

    Google Scholar 

  • Helama S, Lindholm M, Timonen M, Eronen M (2004) Detection of climate signal in dendrochronological data analysis: a comparison of tree-ring standardization methods. Theor Appl Climatol 79(3–4):239–254. doi:10.1007/s00704-004-0077-0

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull 43:69–78

    Google Scholar 

  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Koppen–Geiger climate classification updated. Meteorol Z 15(3):259–263. doi:10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Kultti S, Mikkola K, Virtanen T, Timonen M, Eronen M (2006) Past changes in the Scots pine forest line and climate in Finnish Lapland: a study based on megafossils, lake sediments, and GIS-based vegetation and climate data. Holocene 16(3):381–391. doi:10.1191/0959683606h1934rp

    Article  Google Scholar 

  • Liang EY, Wang YF, Xu Y, Liu BM, Shao X (2010) Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau. Trees 24(2):363–373. doi:10.1007/s00468-009-0406-0

    Article  Google Scholar 

  • Linderholm HW, Bjorklund JA, Seftigen K, Gunnarson BE, Grudd H, Jeong JH, Drobyshev I, Liu Y (2010) Dendroclimatology in Fennoscandia—from past accomplishments to future potential. Clim Past 6(1):93–114

    Article  Google Scholar 

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712

    Article  Google Scholar 

  • Nicolussi K, Kaufmann M, Melvin TM, van der Plicht J, Schiessling P, Thurner A (2009) A 9111 year long conifer tree-ring chronology for the European Alps: a base for environmental and climatic investigations. Holocene 19(6):909–920. doi:10.1177/0959683609336565

    Article  Google Scholar 

  • Schweingruber FH, Bartholin T, Schar E, Briffa KR (1988) Radiodensitometric-dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17(4):559–566

    Article  Google Scholar 

  • Solomon S, Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change, Working Group I (2007) Climate change 2007: the physical science basis : contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Speer JH (2010) Fundamentals of tree-ring research. University of Arizona Press, Tucson

    Google Scholar 

  • Tegel W, Vanmoerkerke J, Büntgen U (2010) Updating historical tree-ring records for climate reconstruction. Quat Sci Rev 29(17–18):1957–1959. doi:10.1016/j.quascirev.2010.05.018

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time-series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213

    Article  Google Scholar 

Download references

Acknowledgments

Supported by the Mainz Geocycles Research Centre. We thank Dana Riechelmann and Florian Benninghoff for help with fieldwork and Lea Schneider for discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Düthorn.

Additional information

Communicated by J. Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Düthorn, E., Holzkämper, S., Timonen, M. et al. Influence of micro-site conditions on tree-ring climate signals and trends in central and northern Sweden. Trees 27, 1395–1404 (2013). https://doi.org/10.1007/s00468-013-0887-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-013-0887-8

Keywords

Navigation