Skip to main content
Log in

Relationship between hydraulic conductance and citrus dwarfing by the Flying Dragon rootstock (Poncirus trifoliata L. Raft var. monstruosa)

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

This work studied the hydraulic characteristics and physiological behavior of two trifoliate orange (Poncirus trifoliata L. Raft) varieties—Flying Dragon (FD) and Rubidoux (RT)—with contrasting size-controlling potential when used as rootstocks for citrus trees. Thus, Valencia orange scions growing on RT root system develop about 40 % more biomass than scions on FD. The anatomical study of xylem root tissue of both rootstocks showed that the number of vessels per cross-sectional area in RT almost doubled that found in FD, whereas diameter distribution did not vary significantly. Hydraulic resistance determined in rootstocks, and bud union segments were, respectively, 2- and 3.4-fold higher in trees on FD than in trees on RT. Root systems accounted for 46.5 and 55.2 % of whole-plant hydraulic resistance, whereas bud union segments represented 7.5 and 14.6 % of this parameter, the dwarfing rootstock (FD) having the highest values. Reduced hydraulic conductance in plants on FD rootstock diminished water potential in high evaporative demand periods, causing a reduction in stomatal conductance with respect to plants on RT. This leads to lower net photosynthetic CO2 assimilation, which may affect biomass production. Translocation of 13C-labeled photoassimilates from leaves to roots was lower in plants on FD than in plants on RT, indicating that in the dwarfing rootstock (FD) there may be a vascular resistance to sucrose transport at the budding union level. Findings show that reduced hydraulic conductance may be the main cause of rootstock-induced dwarfing in citrus grafted onto FD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atkinson CJ, Else MA, Taylor L, Dover CJ (2003) Root and stem hydraulic conductivity as determinants of growth potential in grafted trees of apple (Malus pumila Mill.). J Exp Bot 54:1221–1229

    Article  PubMed  CAS  Google Scholar 

  • Basile B, Marsal J, DeJong TM (2003a) Daily shoot extension growth of peach trees growing on rootstocks that reduce scion growth to daily dynamics of stem water potential. Tree Physiol 23:695–704

    Article  PubMed  Google Scholar 

  • Basile B, Marsal J, Solari L, Tyree MT, Bryla DR, DeJong TM (2003b) Hydraulic conductance of peach trees grafted on rootstocks with differing size-controlling potential. J Hortic Sci Biotechnol 78:768–774

    Google Scholar 

  • Becker P, Tyree MT, Tsuda M (1999) Hydraulic conductances of angiosperms versus conifers: similar transport sufficiency at the whole-plant level. Tree Physiol 19:445–452

    Article  PubMed  Google Scholar 

  • Berman ME, DeJong TM (1997) Diurnal patterns of stem extension growth in peach (Prunus persica): temperature and fluctuations in water status determine growth rate. Physiol Plant 100:361–370

    Article  CAS  Google Scholar 

  • Bitters WP, Cole DA, McCarty CD (1979) Facts about dwarf citrus trees. Citrograph 64:54–56

    Google Scholar 

  • Bledsoe TM, Orians CM (2006) Vascular pathways constraint 13C accumulation in large root sinks of Lycopersicon esculentum (Solanaceae). Am J Bot 93:884–890

    Article  CAS  Google Scholar 

  • Cantuarias-Aviles T, Mourao Filho FAA, Stuchi ES, Silva SR, Spinoza-Núñez E (2010) Tree performance and fruit yield and quality of “Okitsu” Satsuma mandarin grafted on 12 rootstocks. Sci Hortic 123:318–322

    Article  Google Scholar 

  • Cantuarias-Aviles T, Mourao Filho FAA, Stuchi ES, Silva SR, Spinoza-Núñez E (2011) Horticultural performance of “Folha Murcha” sweet orange onto twelve rootstocks. Sci Hortic 129:259–265

    Article  Google Scholar 

  • Caruso T, Inglese P, Giovannini D, Turci E (1995) Rootstock influence on dry matter and minerals above-ground content and partitioning in ‘Maravilha’ peach trees. Acta Hortic 383:105–114

    Google Scholar 

  • Caruso T, Inglese P, Sidari M, Sottile F (1997) Rootstock influences seasonal dry matter and carbohydrate content and partitioning in above-ground components of “Flordaprince” peach trees. Acta Hortic 383:105–114

    Google Scholar 

  • Castle WS, Baldwin JC, Muraro RP (2007) “Hamlin” orange trees on Flying Dragon trifoliate orange, Changsha mandarin, or Koethen sweet orange x Rubidoux trifoliate orange citrange rootstock at tree in row spacings in a flatwoods site. Proc Fla State Hortic Soc 120:92–96

    Google Scholar 

  • Castle WS, Baldwin JC, Muraro RP (2010) Rootstocks and the performance and economic returns of “Hamlin” sweet orange trees. HortScience 45:875–881

    Google Scholar 

  • Cheng FS, Roose ML (1995) Origin and inheritance of dwarfing by the citrus rootstock Poncirus trifoliata “Flying Dragon”. J Am Soc Hortic Sci 120:286–291

    Google Scholar 

  • Cohen S, Naor A (2002) The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductances. Plant Cell Environ 25:17–28

    Article  Google Scholar 

  • Cohen S, Naor A, Bennink J, Grava A, Tyree M (2007) Hydraulic resistance components of mature apple trees on rootstocks of different vigour. J Exp Bot 58:4213–4224

    Article  PubMed  CAS  Google Scholar 

  • Comstock JP (2002) Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. J Exp Bot 53:195–200

    Article  PubMed  CAS  Google Scholar 

  • Espinoza-Núñez E, Mourao Filho FAA, Stuchi ES, Cantuarias-Aviles T, Dias CTS (2011) Performance of “Tahiti” lime on twelve rootstocks under irrigated and non-irrigated conditions. Sci Hortic 129:227–231

    Article  Google Scholar 

  • Gaudillere JP, Moing A, Carbonne F (1992) Vigour and non-structural carbohydrates in young prune trees. Sci Hortic 51:197–211

    Article  CAS  Google Scholar 

  • Gonçalves B, Moutinho-Pereira J, Santos A, Silva AP, Bacelar E, Correia C, Rosa E (2006) Scion–rootstock interaction affects the physiology and fruit quality of sweet cherry. Tree Physiol 26:93–104

    Article  PubMed  Google Scholar 

  • Gonçalves B, Correia C, Silva AP (2007) Variations in xylem structure and function in roots and stems of scion-rootstock combinations of sweet cherry tree (Prunus avium L.). Trees 21:121–130

    Article  Google Scholar 

  • Gonzatto MP, Kovaleski AP, Brugnara EC, Weiler RL, Sartori IA, de Lima JG, Bender RJ, Schwarz SF (2011) Performance of “Oneco” mandarin on six rootstocks in South Brazil. Pesquisa Agropecuária Brasileira 46:406–411

    Article  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Stn Exp Stn Circ 347:1–32

    Google Scholar 

  • Iwanami H, Moriya S, Abe K (2009) Relationships between sap flow, hydraulic conductivity, and the anatomical characteristics of stems and roots in apple rootstocks of different vigour. J Hortic Sci Biotechnol 84:632–638

    Google Scholar 

  • Iwasaki M, Fukamachi H, Satoh K, Nesumi H, Yoshioka T (2011) Development of tree vigor prediction method at an early stage based on stem hydraulic conductance of seedlings in citrus rootstocks. J Jpn Soc Hortic Sci 80:390–395

    Article  Google Scholar 

  • Jones OP (1984) Mode-of-action of rootstock/scion interactions in apple and cherry trees. Acta Hortic 146:175–182

    Google Scholar 

  • Jones HG, Sutherland RA (1991) Stomatal control of xylem embolism. Plant Cell Environ 14:607–612

    Article  Google Scholar 

  • Kubota N, Kohno A, Shimamura K (1990) Translocation and distribution of 13C-photosynthates in ‘Sanyo Suimitsu’ peach trees as affected by different rootstocks. J Japan Soc Hortic Sci 59:319–324

    Article  CAS  Google Scholar 

  • Mademba-Sy F, Lemerre-Desprez Z, Lebegin S (2012) Use of Flying Dragon trifoliate orange as dwarfing rootstock for citrus under tropical climatic conditions. HortScience 47:11–17

    Google Scholar 

  • Magnani F, Mencuccini M, Grace J (2000) Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant Cell Environ 23:251–263

    Article  Google Scholar 

  • Marshall C (1996) Sectoriality and physiological organization in herbaceous plants: an overview. Vegetatio 127:9–16

    Article  Google Scholar 

  • McCarty CD, Cole DA (1982) Flying Dragon: a potential dwarfing rootstock. Citograph 67:71–72

    Google Scholar 

  • Meinzer FC (2002) Co-ordination of vapour and liquid phase water transport properties in plants. Plant Cell Environ 23:251–263

    Google Scholar 

  • Meinzer FC, Woodruff DR, Shaw DC (2004) Integrated responses of hydraulic architecture, water and carbon relations of western hemlock to dwarf mistletoe infection. Plant Cell Environ 27:937–946

    Article  Google Scholar 

  • Nardini A, Salleo S (2000) Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? Trees 15:14–24

    Article  Google Scholar 

  • Nardini A, Tyree MT (1999) Root and shoot hydraulic conductance of seven Quercus species. Ann Forest Sci 56:371–377

    Article  Google Scholar 

  • Nardini A, Gasco A, Raimondo F, Gortan E, Lo Gullo MA, Caruso T, Salleo S (2006) Is rootstock-induced dwarfing in olive an effect of reduced plant hydraulic efficiency. Tree Physiol 26:1137–1144

    Article  PubMed  Google Scholar 

  • Noda K, Okuda H, Iwagaki I (2000) Indole acetic acid and abscisic acid levels in new shoots and fibrous roots of citrus scion-rootstock combinations. Sci Hortic 84:245–254

    Article  CAS  Google Scholar 

  • O′Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by Toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • Olien WC, Lakso AN (1986) Effect of rootstock on apple (Malus domestica) tree water relations. Physiol Plant 67:421–430

    Article  Google Scholar 

  • Olmstead MA, Lang NS, Ewers FW, Owens SA (2006) Xylem vessel anatomy of sweet cherries grafted onto dwarfing and non dwarfing rootstocks. J Am Soc Hortic Sci 131:577–585

    Google Scholar 

  • Olmstead MA, Lang NS, Lang GA (2010) Carbohydrate profiles in the graft union of young sweet cherry trees grown on dwarfing and vigorous rootstocks. Sci Hortic 124:78–82

    Article  CAS  Google Scholar 

  • Poggi I, Polidori JJ, Gandoin JM, Paolacci V, Battini M, Albertini M, Ameglio T, Cochard H (2007) Stomatal regulation and xylem cavitation in Clementine (Citrus clementina Hort) under drought conditions. J Hortic Sci Biotechnol 82:845–848

    Google Scholar 

  • Preston KA (1998) The effects of developmental stage and source leaf position on integration and sectorial patterns of carbohydrate movement in an annual plant, Perilla frutescens (Lamiaceae). Am J Bot 85:1695–1703

    Article  PubMed  CAS  Google Scholar 

  • Salvatierra MAG, Gemma H, Iwahori S (1998) Partitioning of carbohydrates and development of tissues in the graft union of peaches grafted on Prunus tomentosa Thunb. rootstock. J Jpn Soc Hortic Sci 67:475–482

    Article  Google Scholar 

  • Scholander P, Hammel H, Bradstreet EY, Hemmingsen E (1965) Sap pressure in vascular plants. Science 37:247–274

    Google Scholar 

  • Schöning U, Kollman R (1997) Phloem translocation in regenerating in vitroheterografts of different compatibility. J Exp Bot 48:289–295

    Article  Google Scholar 

  • Simons RK, Chu MC (1983) Graft union development, Granny Smith/EM 26—specific growth characteristics between stock and scion. Compact Fruit Tree 16:73–82

    Google Scholar 

  • Solari LI, Johnson S, DeJong TM (2006a) Relationship of water status to vegetative growth and leaf gas exchange of peach (Prunus persica) trees on different rootstocks. Tree Physiol 26:1333–1341

    Article  PubMed  Google Scholar 

  • Solari LI, Johnson S, DeJong TM (2006b) Hydraulic conductance characteristics of peach (Prunus persica) trees on different rootstocks are related to biomass production and distribution. Tree Physiol 26:1343–1350

    Article  PubMed  Google Scholar 

  • Soumelidou K, Battey NH, Barnett JR, John P (1994) The anatomy of the developing bud union and its relationship to dwarfing in apple. Ann Bot 74:605–611

    Article  Google Scholar 

  • Sperry JS, Alder NN, Eastlack SE (1993) The effect of reduced hydraulic conductance on stomatal conductance and xylem cavitation. J Exp Bot 44:1075–1082

    Article  Google Scholar 

  • Syvertsen JP (1981) Hydraulic conductivity of four commercial citrus rootstocks. J Am Soc Hortic Sci 106:378–381

    Google Scholar 

  • Syvertsen JP, Graham JH (1985) Hydraulic conductivity of roots, mineral nutrition and leaf gas exchange of citrus rootstocks. J Am Soc Hortic Sci 110:865–869

    Google Scholar 

  • Tadeo FR, Ben-Cheikh W, Gomez-Cadenas A, Talon M, Primo-Millo E (1997) Gibberellin–ethylene interaction controls radial expansion in citrus roots. Planta 202:370–378

    Article  CAS  Google Scholar 

  • Tombesi S, Johnson S, Day KR, DeJong TM (2010) Relationships between xylem vessel characteristics, calculated axial hydraulic conductance and size-controlling capacity of peach rootstocks. Ann Bot 105:327–331

    Article  PubMed  Google Scholar 

  • Tombesi S, Almehdi A, DeJong TM (2011) Phenotyping vigour control capacity of new peach rootstocks by xylem vessel analysis. Sci Hortic 127:353–357

    Article  Google Scholar 

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Article  Google Scholar 

  • Tyree MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Plant Physiol 88:574–580

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT, Patino S, Bennink J, Alexander J (1995) Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J Exp Bot 46:83–94

    Article  CAS  Google Scholar 

  • Vercambre G, Doussan C, Pages L, Habib R, Pierret A (2002) Influence of xylem development on axial hydraulic conductance within Prunus root systems. Trees 16:479–487

    Article  Google Scholar 

  • Watson MA (1986) Integrated physiological units in plants. Trends Ecol Evol 1:119–123

    Article  PubMed  CAS  Google Scholar 

  • Watson MA, Casper BB (1984) Morphogenetic constraints on patterns of carbon distribution in plants. Annu Rev Ecol Syst 15:233–258

    Article  Google Scholar 

  • Webster AD (1995) Rootstock and interstock effects on deciduous fruit tree vigour, precocity and yield productivity. New Zeal J Crop Hortic 23:373–382

    Article  Google Scholar 

  • Weibel A (1999) Effect of size-controlling rootstocks on vegetative and reproductive growth of peach [Prunus persica (L.) Batsch]. M.S. Thesis, University of Davis, CA, p 130

  • Yonemoto Y, Matsumoto K, Furukawa T, Asakawa M, Okuda H, Takahara T (2004) Effects of rootstock and crop load on sap flow rate in branches of “Shirakawa Satsuma” mandarin (Citrus unshiu Marc.). Sci Hortic 102:295–300

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (RTA2011-00127), Generalitat Valenciana, and FEDER funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Martínez-Alcántara.

Additional information

Communicated by T. Koike.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Alcántara, B., Rodriguez-Gamir, J., Martínez-Cuenca, M.R. et al. Relationship between hydraulic conductance and citrus dwarfing by the Flying Dragon rootstock (Poncirus trifoliata L. Raft var. monstruosa). Trees 27, 629–638 (2013). https://doi.org/10.1007/s00468-012-0817-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0817-1

Keywords

Navigation