Skip to main content

Advertisement

Log in

Tree-ring responses in Araucaria araucana to two major eruptions of Lonquimay Volcano (Chile)

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Palaeoclimate proxies have demonstrated links between climate changes and volcanic activity. However, not much is known about the impact of volcanic eruptions on forest productivity. Here we used tree-ring width and annually resolved carbon and oxygen isotopic records from tree rings of Araucaria araucana (Molina) K. Koch, providing a centennial-scale reconstruction of tree ecophysiological processes in forest stands nearby the Lonquimay Volcano (Chile). We observed a mean decrease in tree-ring width following the major eruption of 19881990 (with aerosol emission), most probably caused by the modified ecological conditions due to acid rain and ash deposition, while a generally negative relationship between δ13C and δ18O would point to a decline in humidity and precipitation. More negative δ13C and lower δ18O values (positive correlation) following the major eruption of 1887–1890 (without aerosol emission) would suggest high stomatal conductance and moisture availability, though tree-ring width (and probably photosynthetic rate) was unaltered. At least for this sample of trees, in the case of eruption with large tephra emission, the beneficial effect of aerosol light scattering on tree productivity appears to be outweighed by the detrimental effect of eruption-induced toxic deposition. Signals of the two major eruptions of the past 200 years at Lonquimay were present in tree rings of nearby A. araucana. No unique response of tree functions to volcanic eruptions can be expected, but rather (1) the variable volcanic properties and (2) the complex interplay of diffuse light increase (aerosol scattering), air temperature decrease (cloud shading), and toxic deposition impact (volcanic ash), makes any prediction of tree growth and ecophysiological response very challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Araya O, Wittwer F, Villa A (1993) Evolution of fluoride concentrations in cattle and grass following a volcanic eruption. Vet Hum Toxicol 35:437–440

    PubMed  CAS  Google Scholar 

  • Adams MA, Grierson PF (2001) Stable isotopes at natural abundance in terrestrial plant ecology and ecophysiology: an update. Plant Biol 3:299–310

    Article  CAS  Google Scholar 

  • Angert A, Biraud S, Bonfils C, Buermann W, Fung I (2004) CO2 seasonality indicates origins of post-Pinatubo sink. Geophys Res Lett 31:L11103

    Article  Google Scholar 

  • Armesto JJ, Arroyo MTK, Hinojosa LF (2007) The Mediterranean environment of central Chile. In: Veblen TT, Young KR, Orne AR (eds) The physical geography of South America. Oxford University Press, Oxford, pp 184–199

    Google Scholar 

  • Baillie MGL, Munro MAR (1988) Irish tree rings, Santorini and volcanic dust veils. Nature 332:344–346

    Article  Google Scholar 

  • Barbour MM (2007) Stable oxygen isotope composition of plant tissue: a review. Funct Plant Biol 34:83–94

    Article  CAS  Google Scholar 

  • Barbour MM, Farquhar GD (2000) Relative humidity- and ABA-induced variation in carbon and oxygen isotope ratios of cotton leaves. Plant Cell Environ 23:473–485

    Article  CAS  Google Scholar 

  • Barbour MM, Walcroft AS, Farquhar GD (2002) Seasonal variation in δ13C and δ18O of cellulose from growth rings of Pinus radiata. Plant Cell Environ 25:1483–1499

    Article  Google Scholar 

  • Battipaglia G, Cherubini P, Saurer M, Siegwolf RTW, Strumia S, Cotrufo MF (2007) Volcanic explosive eruptions of the Vesuvio decrease tree-ring growth but not photosynthetic rates in the surrounding forests. Global Change Biol 13:1122–1137

    Article  Google Scholar 

  • Battipaglia G, Jäggi M, Saurer M, Siegwolf RTW, Cotrufo MF (2008) Climatic sensitivity of δ18O in the wood and cellulose of tree rings: results from a mixed stand of Acer pseudoplatanus L. and Fagus sylvatica L. Paleogeo Paleoclimatol Paleoecol 261:193–202

    Article  Google Scholar 

  • Biondi F (2000) Are climate–tree growth relationships changing in north-central Idaho, USA? Arct Ant Alp Res 32:111–116

    Article  Google Scholar 

  • Biondi F, Fessenden JE (1999) Response of lodgepole pine growth to CO2 degassing at Mammoth Mountain, California. Ecology 80:2420–2426

    Google Scholar 

  • Biondi F, Estrada IG, Galvilanes Ruiz JC, Torres AE (2003) Tree growth response to the 1913 eruption of Volcán de Fuego de Colima, Mexico. Quatern Res 59:293–299

    Article  Google Scholar 

  • Boninsegna JA, Argollo J, Aravena JC, Barichivich J, Christie D, Ferrero ME, Lara A, Le Quesne C, Luckman BH, Masiokas M, Morales M, Oliveira JM, Roig F, Srur A, Villalba R (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeo Palaeoclim Palaeoecol 281:210–228

    Article  Google Scholar 

  • Borella S, Leuenberger M, Saurer M, Siegwolf R (1998) Reducing uncertainties in δ13C analysis of tree rings: poolings, milling and cellulose extraction. J Geophys Res 103:19519–19526

    Article  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperatures over the past 600 years. Nature 393:450–455

    Article  CAS  Google Scholar 

  • Cohan DS, Xu J, Greenwald R, Bergin MH, Chameides WL (2002) Impact of atmospheric aerosol light scattering and absorption on terrestrial net primary productivity. Glob Biogeochem Cycles 16:25–34

    Article  Google Scholar 

  • Cook ER, Briffa K, Shiyatov S, Mazepa V (1990) Tree-ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis L (eds) Methods of dendrochronology. Kluwer, Amsterdam, pp l04–132

    Google Scholar 

  • Cullen LE, Grierson PF (2006) Is cellulose extraction necessary for developing stable carbon and oxygen isotope chronologies from Callitris glaucophylla? Palaeogeo Palaeoclim Palaeoecol 236:206–216

    Article  Google Scholar 

  • Cullen LE, Adams MA, Anderson MJ, Grierson PF (2008) Analyses of δ13C and δ18O in tree rings of Callitris columellaris provide evidence of a change in stomatal control of photosynthesis in response to regional changes in climate. Tree Physiol 28:1525–1533

    Article  PubMed  CAS  Google Scholar 

  • D’Arrigo R, Jacoby G (1999) Northern North American tree-ring evidence for regional temperature changes after major volcanic events. Clim Change 41:1–15

    Article  Google Scholar 

  • D’Arrigo R, Frank D, Jacoby G, Pederson N (2001) Spatial response to major volcanic events in or about AD 536, 934 and 1258: Frost rings and other dendrochronological evidence from Mongolia and Northern Siberia. Clim Change 49:239–246

    Article  Google Scholar 

  • D’Arrigo R, Wilson R, Tudhope A (2009) The impact of volcanic forcing on tropical temperatures during the past four centuries. Nat Geosci 2:51–56

    Article  Google Scholar 

  • Donoso CZ, Lara AA (1999) Silvicultura de los Bosques Nativos de Chile. Editorial Universitaria, Santiago

  • Dowse HB, Ringo JM (1989) The search for hidden periodicities in biological time series revisited. J Theor Biol 139:487–515

    Article  Google Scholar 

  • Duchesne L, Ouimet R, Houle D (2002) Basal area growth of sugar maple in relation to acid deposition, stand health, and soil nutrients. J Environ Q 31:1676–1683

    Article  CAS  Google Scholar 

  • Eggler WA (1967) Influence of volcanic eruptions on xylem growth patterns. Ecology 48:644–647

    Article  Google Scholar 

  • Emparan C, Suárez M, Muñoz J (1992) Hoja Curacautín, Regiones de la Araucanía y del Biobío. Servicio Nacional de Geología y Minería. Carta Geológica de Chile, No. 71, escala 1:250.000

  • Farquhar GD, O’ Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon-dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Article  CAS  Google Scholar 

  • Farquhar GD, Barbour MM, Henry BK (1998) Interpretation of oxygen isotope composition of leaf material. In: Griffiths EH (ed) Stable isotopes: integration of biological, ecological and geochemical processes. BIOS Scientific Publishers, Oxford, pp 27–62

    Google Scholar 

  • Francey RJ, Allison CE, Etheridge DM, Trudinger CM, Enting IG, Leuenberger M, Landgenfelds RL, Michel E, Steele LP (1999) A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B:170–193

    CAS  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Fuenzalida H (1965) Geografía Económica de Chile. Corporación de Fomento de la Producción (CORFO), Santiago de Chile, pp 130–267

  • Gower ST, Vogt KA, Grier CC (1992) Carbon dynamics of Rocky Mountain Douglas-fir-influence of water and nutrient availability. Ecol Monogr 62:43–65

    Article  Google Scholar 

  • Gu L, Baldocchi DD, Verma SB, Black TA, Vesala T, Falge EM, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107:31421–31434

    Google Scholar 

  • Gu L, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the mount Pinatubo Eruption: enhanced photosynthesis. Science 299:2035–2038

    Article  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT (2006) Palaeontological data analysis. Blackwell, Cambridge, p 351

    Google Scholar 

  • Hill SA, Waterhouse JS, Field EM, Switsur VR, ap Rees T (1995) Rapid recycling of triose phosphates in oak stem tissue. Plant Cell Environ 18:931–936

    Article  CAS  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree ring dating and measurement. Tree-Ring Bull 43:69–78

    Google Scholar 

  • Jäggi M, Saurer M, Fuhrer J, Siegwolf R (2003) Seasonality of δ18O in needles and wood of Picea abies. New Phytol 158:51–59

    Article  Google Scholar 

  • Kaennel M, Schweingruber FH (1995) Multilingual glossary of dendrochronology. Terms and definitions in English, Spanish, Italian, Portuguese, and Russian. Swiss Federal Institute for Forest, Snow and Landscape Research, Haupt, Bern

  • Keitel C, Matzarakis A, Rennenberg H, Gessler A (2006) Carbon isotopic composition and oxygen isotopic enrichment in phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate gradient. Plant Cell Environ 29:1492–1507

    Article  PubMed  CAS  Google Scholar 

  • Korol R, Kirschbaum M, Farquhar G, Jeffreys M (1999) Effects of water status and soil fertility on the C-isotope signature in Pinus radiata. Tree Physiol 19:551–562

    Article  PubMed  Google Scholar 

  • Krakauer NY, Randerson JT (2003) Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings. Glob Biogeochem Cycles 17:1118

    Article  Google Scholar 

  • LaMarche VC Jr, Hirschboek KK (1984) Frost rings in trees as records of major volcanic eruptions. Nature 307:121–126

    Article  Google Scholar 

  • Lara A, Wolodarsky-Franke A, Aravena JC, Villalba R, Solari ME, Pezoa L, Rivera A, Le Quesne C (2005) Climate fluctuations derived from tree-rings and other proxy-records in the Chilean Andes: State of the art and future prospects. In: Huber UM, Bugmann HKM, Reasoner MA (eds) Advances in global change research, vol 23, Global change and mountain regions an overview of current knowledge. Springer, Berlin, pp 145–156

  • Leavitt SW (1993) Seasonal C-13/C-12 changes in tree rings—species and site coherence, and a possible drought influence. Can J For Res 23:210–218

    Article  CAS  Google Scholar 

  • Leavitt SW, Long A (1986) Stable-carbon isotope variability in tree foliage and wood. Ecology 67:1002–1010

    Article  CAS  Google Scholar 

  • Lipp J, Trimborn P, Fritz P, Moser H, Becker B, Frenzel B (1991) Stable isotope in tree ring cellulose and climatic change. Tellus 43B:322–330

    CAS  Google Scholar 

  • Loader NJ, Robertson I, Barker AC, Switsur VR, Waterhouse JS (1997) An improved technique for the batch processing of small whole wood samples to alpha-cellulose. Chem Geol 136:313–317

    Article  CAS  Google Scholar 

  • Lough JM, Fritts HC (1987) An assessment of the possible effects of volcanic eruptions on North American climate using tree-ring data, 1602 to 1900 ad. Clim Change 10:219–239

    Article  Google Scholar 

  • Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlindstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687–1689

    Article  PubMed  CAS  Google Scholar 

  • Mather TA, Tsanev VI, Pyle DM, McGonigle AJS, Oppenheimer C, Allen AG (2004) Characterization and evolution of trophospheric plumes from Lascar and Villarrica volcanoes, Chile. J Geophys Res 109:D21303

    Article  Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801

    Article  Google Scholar 

  • McCarroll D, Pawellek F (2001) Stable carbon isotope ratios of Pinus sylvestris from northern Finland and the potential for extracting a climate signal from long Fennoscandian chronologies. Holocene 11:517–526

    Article  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Miller A (1976) The climate of Chile. In: Schwerdtfeger W (ed) World survey of climatology. Climates of Central and South America. Elsevier, Amsterdam, pp 113–131

    Google Scholar 

  • Molineaux B, Ineichen P (1996) Impact of Pinatubo aerosols on the seasonal trends of global, direct and diffuse irradiance in two northern mid-latitude sites. Sol Energy 58:91–101

    Article  Google Scholar 

  • Moreno H, Gardeweg MC (1989) La erupción reciente en el complejo volcánico Lonquimay (Diciembre 1988-), Andes del Sur. Rev Geol Chile 16:93–117

    CAS  Google Scholar 

  • Mundo IA, Roig Juñent FA, Villalba R, Kitzberger T, Barcelo MB (2012) Araucaria araucana tree-ring chronologies in Argentina: spatial growth variations and climate influences. Trees 26:443–458

    Article  Google Scholar 

  • Naranjo JA, Sparks RSJ, Stasiuk MV, Moreno H, Ablay GJ (1992) Morphological, structural and textural variations in the 1988–1990 Andesite lava of Lonquimay Volcano, Chile. Geol Mag 129:657–678

    Article  Google Scholar 

  • Neufeld HS, Jernstedt JA, Haines BL (1985) Direct foliar effects of simulated acid rain. New Phytol 99:389–405

    Article  CAS  Google Scholar 

  • Pearson CL, Dale DS, Brewer PW, Kuniholm PI, Lipton J, Manning SW (2009) Dendrochemical analysis of a tree-ring growth anomaly associated with the Late Bronze Age eruption of Thera. J Archaeol Sci 36:1206–1214

    Article  Google Scholar 

  • Pounds J, Puschendorf R (2004) Ecology: clouded futures. Nature 427:107–109

    Article  PubMed  CAS  Google Scholar 

  • Poussart PF, Evans MN, Schrag DP (2004) Resolving seasonality in tropical trees: multi-decade, high resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth Planet Sci Lett 218:301–316

    Article  CAS  Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219

    Article  CAS  Google Scholar 

  • Robock A, Free M (1995) Ice cores as an index of global volcanism from 1850 to the present. J Geophys Res 100:11549–11567

    Article  Google Scholar 

  • Roderick M, Farquhar GD, Berry S, Noble I (2001) On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129:21–30

    Article  Google Scholar 

  • Roden JS, Johnstone J, Dawson TE (2009) Intra-annual variation in the stable oxygen and carbon isotope ratios of cellulose in tree rings of coast redwood (Sequoia sempervirens). Holocene 19:189–197

    Article  Google Scholar 

  • Ruggieri F, Fernandez-Turiel JL, Saavedra J, Gimeno D, Polanco E, Naranjo JA (2011) Environmental geochemistry of recent volcanic ashes from Southern Andes. Environ Chem 8:236–247

    Article  CAS  Google Scholar 

  • Salzer MW, Hughes MK (2007) Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr. Quat Res 67:57–68

    Article  Google Scholar 

  • Saurer M, Aellen K, Siegwolf R (1997) Correlating δ13C and δ18O in cellulose of trees. Plant Cell Environ 20:1543–1550

    Article  Google Scholar 

  • Scharf LL (1991) Statistical signal processing. Addison-Wesley, New York

    Google Scholar 

  • Scheidegger Y, Saurer M, Bahn M, Siegwolf RTW (2000) Linking stable oxygen and carbon isotopes with stomatal conductance and photosynthetic capacity: a conceptual model. Oecologia 125:350–357

    Article  Google Scholar 

  • Schulze E-D, Oren R, Lange OL (1989) Processes leading to forest decline: a synthesis. In: Schulze E-D, Lange OL, Oren R (eds) Forest decline and air pollution, Ecological studies, vol 77, pp 459–468

  • Schweingruber FH (1998) Tree rings: basics and applications of dendrochronology. Kluwer, Dordrecht

    Google Scholar 

  • Scuderi LA (1990) Tree ring evidence for climatically effective volcanic eruptions. Quat Res 34:67–85

    Article  Google Scholar 

  • Seymour VA, Hinckley TM, Morikawa Y, Franklin JF (1983) Foliage damage in 7 coniferous trees following volcanic ashfall from Mt. St. Helens (Washington State). Oecologia 59:339–343

    Article  Google Scholar 

  • Sheppard PR, Ort MH, Anderson KC, Elson MD, Vázquez-Selem L, Clemens AW, Little NC, Speakman RJ (2008) Multiple dendrochronological signals indicate the eruption of Parícutin volcano, Michoacán, Mexico. Tree-Ring Res 64:97–108

    Article  Google Scholar 

  • Shumilov OI, Kasatkina EA, Mielikainen K, Timonen M, Kanatjev AG (2011) Palaeovolcanos, solar activity and pine tree-rings from the Kola Peninsula (northwestern Russia) over the last 560 years. Int J Environ Res 5:855–864

    CAS  Google Scholar 

  • Smithsonian Institution (1989) Lonquimay. Scientific Event Alert Network (SEAN) Bulletin 14:6–7

  • Solomina O, Pavlova I, Curtis A, Jacoby G, Ponomareva V, Pevsner M (2008) Constraining recent Shiveluch volcano eruptions (Kamchatka, Russia) by means of dendrochronology. Natural Hazards Earth Syst Sci 8:1083–1097

    Article  Google Scholar 

  • Stewart JD, El Abidine AZ, Bernier PY (1994) Stomatal and mesophyll limitations of photosynthesis in black spruce seedlings during multiple cycles of drought. Tree Physiol 15:57–64

    Article  Google Scholar 

  • Switsur VR, Waterhouse JS, Field EM, Carter AHC (1996) Climatic signals from stable isotopes in oak tree rings from East Anglia, Great Britain. In: Dean JS, Meko DM, Swetnam TW (eds) Tree rings, environment and humidity: proceedings of the international conference, radiocarbon, Tucson, pp 637–645

  • Tene A, Tobin B, Dyckmans J, Ray D, Black K, Nieuwenhuis M (2012) Assessment of tree response to drought: validation of a methodology to identify and test proxies for monitoring past environmental changes in trees. Tree Physiol 31:309–322

    Article  Google Scholar 

  • Veblen TT, Armesto JJ, Burns BR, Kitzberger T, Lara A, León B, Young KR (2005) The coniferous forests of South America. In: Andersson F, Gessel S (eds) Ecosystems of the World, Coniferous Forests, Elsevier, Amsterdam, pp 701–725

  • Villalba R, Lara A, Boninsegna JA, Masiokas M, Delgado S, Aravena JC, Roig FA, Schmelter A, Wolodarsky A, Ripalta A (2003) Large-scale temperature changes across the Southern Andes: 20th century variations in the context of the past 400 years. Clim Change 59:177–232

    Article  Google Scholar 

  • Yamaguchi DK (1983) New tree ring dates for recent eruptions of Mount St. Helens. Quat Res 20:246–250

    Article  Google Scholar 

  • Yamaguchi DK (1985) Tree-ring evidence for a two-year interval between recent prehistoric explosive eruptions of Mount St. Helens. Geology 13:554–557

    Article  Google Scholar 

  • Yamaguchi DK, Lawrence DB (1993) Tree-ring evidence for 1842–1843 eruptive activity at the Goat Rocks dome, Mount St. Helens, Washington. Bull Volcanol 55:264–272

    Article  Google Scholar 

  • Zhou LM, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106:20069–20083

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely acknowledge the help of Claudia Cocozza (Università del Molise) in field sampling, Magdalena Nötzli (WSL) in lab analysis, and Anibal Pauchard (Universidad de Concepión) in site selection. We thank CONAF—Corporacion Nacional Forestal (Chile)—for assistance in site selection, and MIUR International Project (Italy—Chile—Argentina) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Tognetti.

Additional information

Communicated by S. Leavitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tognetti, R., Lombardi, F., Lasserre, B. et al. Tree-ring responses in Araucaria araucana to two major eruptions of Lonquimay Volcano (Chile). Trees 26, 1805–1819 (2012). https://doi.org/10.1007/s00468-012-0749-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0749-9

Keywords

Navigation