Skip to main content

Advertisement

Log in

A lifetime perspective of biomass allocation in Quercus pubescens trees in a dry, alpine valley

  • Short Communication
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Plasticity of biomass allocation is a key to growth and survival of trees exposed to variable levels of stress in their lifetime. Most of our understanding of dynamic biomass allocation comes from seedling studies, but plasticity may be different in mature trees. We used stem analysis to reconstruct whole-tree growth and biomass allocation patterns in Quercus pubescens trees harvested from a dry woodland in Valais, Switzerland. We identified three distinct growth phases. In phase I, a primary root developed but the aboveground structure did not persist. In phase II, height growth occurred and secondary roots developed. In phase III, height growth ceased and stems and roots only grew radially. Reference trees harvested from a less dry site nearby only showed phase II-type growth. In line with our hypothesis, drought-stressed trees maintained more biomass in roots and less in aboveground woody parts than reference trees. Contrary to our expectation, stressed trees allocated proportionally more resources to leaves and less to roots in the growing season before harvest than reference trees. It appears that sub-seasonal wood anatomical adjustments to water availability minimize hydraulic failure, thus enabling these dry woodland trees to invest preferentially in leaves. Wet years did not see preferential investment in aboveground tissues, suggesting more restricted plasticity in biomass allocation in these mature trees than in seedlings. It is concluded that trees beyond seedling stage show different responses to variation in drought than the better-studied seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Axelsson E, Axelsson B (1986) Changes in carbon allocation patterns in spruce and pine trees following irrigation and fertilization. Tree Physiol 2:189–204. doi:10.1093/treephys/2.1-2-3.189

    PubMed  Google Scholar 

  • Barbaroux C, Bréda N, Dufrêne E (2003) Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytol 157:605–615. doi:10.1046/j.1469-8137.2003.00681.x

    Article  Google Scholar 

  • Barij N, Stokes A, Bogaard T, van Beek LPH (2007) Does growing on a slope affect tree xylem structure and water relations? Tree Physiol 27:757–764. doi:10.1093/treephys/27.5.757

    Article  PubMed  Google Scholar 

  • Bloom AJ, Chapin FS III, Mooney HA (1985) Resource limitation in plants: an economic analogy. Annu Rev Ecol Syst 16:363–392. doi:10.1146/annurev.es.16.110185.002051

    Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644. doi:10.1051/forest:2006042

    Article  Google Scholar 

  • Brouwer R (1962) Distribution of dry matter in the plant. Neth J Agric Sci 10:361–376

    Google Scholar 

  • Cannell MGR, Dewar RC (1994) Carbon allocation in trees: a review of concepts for modelling. Adv Ecol Res 25:59–104. doi:10.1016/S0065-2504(08)60213-5

    Article  Google Scholar 

  • Carnicer J, Coll M, Ninyerola M, Pons X, Sanchez G, Peñuelas J (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci USA 108:1474–1478. doi:10.1073/pnas.1010070108

    Article  PubMed  CAS  Google Scholar 

  • Chapin FS III, Schulze E-D, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447. doi:10.1146/annurev.es.21.110190.002231

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze E-D, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533. doi:10.1038/nature03972

    Article  PubMed  CAS  Google Scholar 

  • Coleman JS, McConnaughay KDM, Ackerly DD (1994) Interpreting phenotypic variation in plants. Trends Ecol Evol 9:187–191. doi:10.1016/0169-5347(94)90087-6

    Article  PubMed  CAS  Google Scholar 

  • Coutts MP, Nicoll BC (1991) Orientation of the lateral roots of trees. I. Upward growth of surface roots and deflection near the soil surface. New Phyt 119:227–234. doi:10.1111/j.1469-8137.1991.tb01025.x

    Article  Google Scholar 

  • Damesin C, Rambal S (1995) Field study of leaf photosynthetic performance by a Mediterranean deciduous oak tree (Quercus pubescens) during a summer drought. New Phytol 131:159–167. doi:10.1111/j.1469-8137.1995.tb05717.x

    Article  Google Scholar 

  • DeWitt TJ, Sih A, Wilson DS (1998) Costs and limits of phenotypic plasticity. Trends Ecol Evol 13:77–81. doi:10.1016/S0169-5347(97)01274-3

    Article  PubMed  CAS  Google Scholar 

  • Di Iorio A, Lasserre B, Scippa GS, Chiatante D (2005) Root system architecture of Quercus pubescens trees growing on different sloping conditions. Ann Bot 95:351–361. doi:10.1093/aob/mci033

    Article  PubMed  Google Scholar 

  • Drexhage M, Huber F, Colin F (1999) Comparison of radial increment and volume growth in stems and roots of Quercus petraea. Plant Soil 217(1–2):101–110. doi:10.1023/A:1004647418616

    Article  Google Scholar 

  • Fayle DCF (1975) Extension and longitudinal growth during the development of red pine root systems. Can J For Res 5:109–121. doi:10.1139/x75-016

    Article  Google Scholar 

  • Field C, Merion J, Mooney HA (1983) Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia 60:384–389. doi:10.1007/BF00376856

    Article  Google Scholar 

  • Galle A, Esper J, Feller U, Ribas-Carbo M, Fonti P (2010) Responses of wood anatomy and carbon isotope composition of Quercus pubescens saplings subjected to two consecutive years of summer drought. Ann For Sci 67:809. doi:10.1051/forest/2010045:MSNr809

    Article  Google Scholar 

  • Gärtner H (2007) Tree roots—methodological review and new development in dating and quantifying erosive processes. Geomorphology 86:243–251. doi:10.1016/j.geomorph.2006.09.001

    Article  Google Scholar 

  • Gimmi U, Bürgi M (2007) Using oral history and forest management plans to reconstruct traditional non-timber forest uses in the Swiss Rhone valley (Valais) since the late nineteenth century. Environ Hist 13(2):211–246. doi:10.3197/096734007780473492

    Article  Google Scholar 

  • Gimmi U, Wohlgemuth T, Rigling A, Hoffmann CW, Bürgi M (2010) Land-use and climate change effects in forest compositional trajectories in a dry Central-Alpine valley. Ann For Sci 67:701. doi:10.1051/forest/2010026:MSNr701

    Article  Google Scholar 

  • Johnson PS, Shifley SR, Rogers R (2002) Regeneration ecology II: population dynamics. In The ecology and silviculture of oaks. CABI Publishing, Wallingford, UK

  • Krause C, Eckstein D (1993) Dendrochronology of roots. Dendrochronologia 11:9–23

    Google Scholar 

  • Litton CM, Raich JW, Ryan MG (2007) Carbon allocation in forest ecosystems. Glob Change Biol 13(10):2089–2109. doi:10.1111/j.1365-2486.2007.01420.x

    Article  Google Scholar 

  • Magnani F, Mencuccini M, Grace J (2000) Age-related decline in stand productivity: the role of structural acclimation under hydraulic constraints. Plant, Cell Environ 23:251–263. doi:10.1046/j.1365-3040.2000.00537.x

    Article  Google Scholar 

  • Markesteijn L, Poorter L (2009) Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J Ecol 97:311–325. doi:10.1111/j.1365-2745.2008.01466.x

    Article  Google Scholar 

  • Martinez-Vilalta J, Korakaki E, Vanderklein D, Mencuccini M (2007) Below-ground hydraulic conductance is a function of environmental conditions and tree size in Scots pine. Funct Ecol 21(6):1072–1083. doi:10.1111/j.1365-2435.2007.01332.x

    Article  Google Scholar 

  • McConnaughay KDM, Coleman JS (1999) Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80:2581–2593. doi:10.1890/0012-9658(1999)080[2581:BAIPOO]2.0.CO;2]

    Article  Google Scholar 

  • Nardini A, Pitt F (1999) Drought resistance of Quercus pubescens as a function of root hydraulic conductance, xylem embolism and hydraulic architecture. New Phytol 143:485–493. doi:10.1046/j.1469-8137.1999.00476.x

    Article  Google Scholar 

  • Niinemets Ü (2010) Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. For Ecol Manage 260:1623–1639. doi:10.1016/j.foreco.2010.07.054

    Article  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rigling A, Bräker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163(1):105–121. doi:10.1023/A:1020355407821

    Article  Google Scholar 

  • Rigling A, Dobbertin M, Bürgi M, Gimmi U, Graf Pannatier E, Gugerli F, Heiniger U, Polomski J, Rebetez M, Rigling D, Weber P, Wermelinger B, Wohlgemuth T (2006) Verdrängen Flaumeichen die Walliser Waldförhen? Merkbl Prax 41:16

    Google Scholar 

  • Rinn F (2003) TSAP-Win user reference (version 0.53). RinnTech, Heidelberg

    Google Scholar 

  • Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant, Cell Environ 29(3):367–381. doi:10.1111/j.1365-3040.2005.01478.x

    Article  Google Scholar 

  • Sack L, Grubb PJ (2002) The combined impacts of deep shade and drought on the growth and biomass allocation of shade-tolerant woody seedlings. Oecologia 131:175–185. doi:10.1007/s00442-002-0873-0

    Article  Google Scholar 

  • Sterck FJ, Zweifel R, Sass-Klaassen U, Chowdhury Q (2008) Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and Pubescent oak (Quercus pubescens). Tree Physiol 28(4):529–536

    Article  PubMed  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Hydraulic architecture of whole plants and plant performance. In: Xylem structure and the ascent of sap, 2nd edn. Springer, New York, pp 175–205

  • Wardlaw IF (1990) Tansley Review No 27. The control of carbon partitioning in plants. New Phytol 116:341–381. doi:10.1111/j.1469-8137.1990.tb00524.x

    Article  CAS  Google Scholar 

  • Weber P, Bugmann H, Rigling A (2007) Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J Veg Sci 18(6):777–792

    Article  Google Scholar 

  • Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst 6(4):207–215. doi:10.1078/1433-8319-00083

    Article  Google Scholar 

  • Zweifel R, Zeugin F (2008) Ultrasonic acoustic emissions in drought-stressed trees—more than signals from cavitation? New Phytol 179(4):1070–1079. doi:10.1111/j.1469-8137.2008.02521.x

    Article  PubMed  CAS  Google Scholar 

  • Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57(6):1445–1459. doi:10.1093/jxb/erR125

    Article  PubMed  CAS  Google Scholar 

  • Zweifel R, Steppe K, Sterck FJ (2007) Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model. J Exp Bot 58(8):2113–2131. doi:10.1093/jxb/erm050

    Article  PubMed  CAS  Google Scholar 

  • Zweifel R, Rigling A, Dobbertin M (2009) Species-specific stomatal response of trees to drought—a link to vegetation dynamics? J Veg Sci 20:442–454. doi:10.1111/j.1654-1103.2009.05701.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank Simone de Brock, Alfred Chitiki, Qumruzzaman Chowdhury and Marijn de Zwart for conducting fieldwork. Britta Eilmann advised on tree-ring analysis. U.S.-K. received funds from the NWO/MEERVOUD program (NWO/AWL 836.05.030). Two anonymous reviewers are gratefully acknowledged for their insightful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn Slot.

Additional information

Communicated by A. Bräuning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slot, M., Janse-ten Klooster, S.H., Sterck, F.J. et al. A lifetime perspective of biomass allocation in Quercus pubescens trees in a dry, alpine valley. Trees 26, 1661–1668 (2012). https://doi.org/10.1007/s00468-012-0717-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0717-4

Keywords

Navigation