Skip to main content
Log in

Stomatal density distribution patterns in leaves of the Jatobá (Hymenaea courbaril L.)

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Stomata are leaf structures that are essential for regulating gas exchange and water balance in terrestrial plants. Accurately quantifying stomatal characteristics is consequently of great importance for understanding the physiological processes of plants under different environmental conditions. The objective of this study was to investigate the spatial distribution pattern of stomata on leaflet surfaces, and the possible mechanisms that influence this pattern, particularly leaf expansion. To achieve this, we used geostatistical tools combined with an analysis of biometric relationships of leaves from Hymenaea courbaril L. Our analysis indicates that stomata show a clear spatial structure in this species: average values of foliar expansion rates (ERs) were different on right and left-hand sides of the primary venation of each leaflet and there was a close relationship between the spatial pattern of stomatal density and leaf expansion rate. Such differences in lateral expansion may therefore be partially responsible for the heterogeneous distribution of stomata documented here and in other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amzallag GN (2001) Data analysis in plant physiology: are we missing the reality? Plant Cell Environ 24:881–890

    Article  CAS  Google Scholar 

  • Assmann SM, Wang XQ (2001) From milliseconds to millions of years: guard cells and environmental responses. Curr Opin Plant Biol 4:421–428

    Article  PubMed  CAS  Google Scholar 

  • Berger D, Altmann TA (2000) Subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Gene Dev 14:1119–1131

    PubMed  CAS  Google Scholar 

  • Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE (1994) Field scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J 58:1501–1511

    Article  Google Scholar 

  • Chen LQ, Chaloner WG, Beerling DJ, Sun QG, Collinson ME, Mitchell PL (2001) The stomatal frequency of extant and fossil Ginkgo leaves as biosensors of atmospheric CO2 levels. Am J Bot 88:1309–1315

    Article  PubMed  CAS  Google Scholar 

  • Clark I (1979) Practical geostatistics. Applied Science Publishers, London

    Google Scholar 

  • Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453

    Article  Google Scholar 

  • Cressie N (1989) The origins of kriging. Math Geol 22:239–252

    Article  Google Scholar 

  • Cressie N (1993) Statistics for spatial data. John Wiley, New York

    Google Scholar 

  • Croxdale J (2000) Stomatal pattern in angiosperms. Am J Bot 87:1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Dong X, Zhang X (2000) Special stomatal distribution in Sabina vulgaris in relation to its survival in a desert environment. Trees 14:369–375. doi:10.1007/s004680000054

    Article  Google Scholar 

  • Francis JK (1990) Hymenaea courbaril (L.). USDA Forest Service. SO-ITF-SM-27

  • Gandar PW, Hall AJ (1988) Estimating position–time relationships in steady state one-dimensional growth zones. Planta 175:121–129

    Article  Google Scholar 

  • García-Núñez C, Azócar A, Rada F (1995) Photosynthetic acclimation to light in juveniles of two cloud forest tree species. Trees 10:114–124. doi:10.1007/BF00192192

    Article  Google Scholar 

  • Gourdji SM, Hirsch AI, Mueller KL, Yadav V, Andrews AE, Michalak AM (2010) Regional-scale geostatistical inverse modeling of North American CO2 fluxes: a synthetic data study. Atmos Chem Phys 10:6151–6167

    Article  CAS  Google Scholar 

  • Granier C, Tardieu F (1998) Spatial and temporal analyses of expansion and cell cycle in sunflower leaves: a common pattern of development for all zones of a leaf and different leaves of a plant. Plant Phys 116:991–1001

    Article  CAS  Google Scholar 

  • Gratani L, Covone F, Larcher W (2006) Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis. Trees 20:549–558

    Article  Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, London

    Google Scholar 

  • Leroy C, Guéroult M, Wahyune NS, Escoute J, Céréghino R, Sabatier S, Auclair D (2009) Morphogenetic trends in the morphological, optical and biochemical features of phyllodes in Acacia mangium Willd (Mimosaceae). Trees 23:37–49

    Article  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  CAS  Google Scholar 

  • Maurer S, Matyssek R, Günthardt GMS, Landolt W, Eining W (1997) Nutrition and the ozone sensitivity of birch (Betula pendula). Trees 12:1–10

    Google Scholar 

  • Mello JM, Batista JLF, Oliveira MS, Ribeiro PJ Jr (2005) Estudo da dependência espacial de características dendrométricas para Eucalyptus grandis. Cerne 11:113–126

    Google Scholar 

  • Mott K, Buckley TN (1998) Stomatal heterogeneity. J Exp Bot 49:407–417

    Article  Google Scholar 

  • Nadeau JA, Sack FD (2002) Control of stomatal distribution on the Arabidopsis leaf surface. Sci 296:1697–1700

    Article  CAS  Google Scholar 

  • Patterson D (1988) Commercial timbers of the world, 5th edn. Gower Technical Press, Aldershot

  • Peters WS, Bernstein N (1997) The determination of relative elemental growth rate profiles from segmental growth rates. Plant Physiol 113:1395–1404

    PubMed  CAS  Google Scholar 

  • Peters CM, Gentry AH, Mendelsohn RO (1989) Valuation of an Amazonian rainforest. Nature 339:655–656

    Article  Google Scholar 

  • Poole I, Weyers JDB, Lawson T, Raven JA (1996) Variations in stomatal density and index: implications for paleoclimatic reconstructions. Plant Cell Environ 19:705–712

    Article  Google Scholar 

  • Pringle RM, Doak DF, Brody AK, Jocque R, Palmer TM (2010) Spatial pattern enhances ecosystem functioning in an African Savanna. Plos Biol 8:e1000377. doi:10.1371/journal.pbio.1000377

    Article  PubMed  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rasmussen H (1986) Pattern formation and cell interactions in epidermal development of Anemarrhena asphodeloides (Liliaceae). Nord J Bot 6:467–477

    Article  Google Scholar 

  • Ribeiro PJ, Diggle PJ (2001) The geoR package functions for geostatistical data analysis: R. News 1:15–18

    Google Scholar 

  • Rowlingson B, Digglle P (1993) Splancs: spatial point pattern analysis code in S-Plus. Comput Geosci 9:627–655

    Google Scholar 

  • Sachs T (1974) The developmental origin of stomata pattern in Crinum. Bot Gaz 135:314–318

    Article  Google Scholar 

  • Salisbury EJ (1928) On the causes and ecological significance of stomatal frequency with special reference to the woodland flora. Phil Trans R Soc B 216:1–65

    Article  Google Scholar 

  • Schultes R, Raffauf R (1990) The healing forest: medicinal and toxic plants of northwestern Amazonia. Dioscorides Press, Portland

  • Silk WK (1992) Steady form from changing cells. Int J Plant Sci 153:49–58

    Article  Google Scholar 

  • Slavik B (1963) The distribution pattern of transpiration rate, water saturation deficit, stomata number and size, photosynthetic respiration rate in the area of the tobacco leaf blade. Biol Plant 5:143–153

    Article  Google Scholar 

  • Smith S, Weyers DB, Berry WG (1989) Variation in stomatal characteristics over the lower surface of Commelina communis leaves. Plant Cell Environ 12:653–659

    Article  Google Scholar 

  • Wilson CL (1981) Plant epidermal sections and imprints using cyanoacrylate adhesives. Can J Plant Sci 61:781–783

    Article  Google Scholar 

  • Zhao XZ, Daí XF, Wang GX, Shen ZX, Zhang H, Qiu MQ (2006) Developmental mechanism and distribution pattern of stomatal clusters in Cinnamomum camphora. Russ J Plant Physl 53:89–98

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giordane Augusto Martins.

Additional information

Communicated by R. Guy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, G.A., Soares, A.M., Barbosa, J.P.R.A.D. et al. Stomatal density distribution patterns in leaves of the Jatobá (Hymenaea courbaril L.). Trees 26, 571–579 (2012). https://doi.org/10.1007/s00468-011-0620-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0620-4

Keywords

Navigation