Skip to main content

Advertisement

Log in

Effect of initial fertilisation on biomass and nutrient contentof Norway spruce and Douglas-fir plantations at the same site

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Norway spruce (NS) and Douglas-fir (DF) are among the main species used for production forestry in France. In low-elevation mountains and under-acidic conditions, they often occupy the same ecological situations. It is therefore of paramount interest to have a good understanding of how the two species behave under similar conditions and how they react to site improvement by fertilisation. The study stands are part of an experimental stand located in the estate forest of Breuil-Chenue in the Morvan (east central part of France). Its aim is to compare the impact of change in species on ecosystem functions. Destructive sampling of 10 trees per stand, distributed over the whole spectrum of inventoried classes of circumference at breast height (c 1.30), was carried out within four stands, e.g., fertilised and control (non-fertilised) NS; fertilised and control (non-fertilised) DF. Allometric relationships between c 1.30 and biomass or nutrient content per tree compartment were calculated. These equations were applied to the stand inventory for quantifying stand biomass and nutrient content on a hectare basis. The standard deviations of results were estimated using Monte-Carlo simulations. Specific emphasis was given to explain the origin of differences observed between species and treatments, i.e., changes in carbon allocation leading to specific allometric relationships, changes in stand structure (tree size distributions) and changes in stand density due to mortality.

DF was more productive than NS (+28% for total tree biomass, +50% for ligneous biomass and +53% for stem wood). Both NS and DF were affected by fertilisation but in the case of NS, effects on the crown_c 1.30 relationship and on average tree growth were predominant while in the case of DF, the stem_c 1.30 relationship and stand density were affected by changes in soil fertility. The general fertilisation effect was an increment of 40% of ligneous dry matter for DF and only 22% for NS. In both cases, the amount of wood biomass produced per unit of leaf biomass (on a tree basis and, to a lesser extent, on a per hectare basis) was greater in fertilised plots. However, in the case of NS, the same amount of wood biomass was produced from a smaller quantity of leaves while in the case of DF, the same amount of leaves produced more wood biomass.

The amount of nutrients in total ligneous biomass was higher for N, P and K, but lower for Ca and Mg, in DF than in NS. A high variability was observed between nutrient content of the different compartments, e.g., DF < NS for needles (except Mg), DF < NS for K, Ca and Mg for stem wood and DF > NS for N and P of stem wood. Fertilisation did not considerably change the hierarchy. On the basis of this study, all the indexes concerning stand production, wood density, nutrient use efficiency and response to fertilisation gave a net advantage to DF. This information is highly relevant for both ecological and practical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table 5
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • AFES (1992) Association Française pour l'Etude du Sol, Référentiel pédologique. Paris. INRA edn., p 222

  • Alban DH, Perala DA, Schlaegel BE (1978) Biomass and nutrient distribution in aspen, pine and spruces stands on the same soil type in Minnesota. Can J For Res 8:290–299

    CAS  Google Scholar 

  • Algan H (1901) Tarifs unifiés. Revue des Eaux et Forêts 555–562

  • Alriksson A, Eriksson HM (1998) Variations in mineral nutrient and C distribution in the soil and vegetation compartments of five temperate tree species in NE Sweden. For Ecol Manage 108:261–273

    Article  Google Scholar 

  • Aurousseau P (1976) Morphologie et génèse des sols sur granite du Morvan. Phd Thesis, Université de Rennes, 210 p

  • Augusto L, Ranger J, Binkley D, Rothe A (2002) Impact of several common tree species of European temperate forests on soil fertility. Ann For Sci 59(3):233–253

    Article  Google Scholar 

  • Binkley D (1995) The influence of tree species on forest soils: processes and patterns. In: Mead DJ, Cornforth IS (eds) Proceedings of the trees and soil workshop, Lincoln University, 28 Feb–2 March 1994. Agronomy society of New Zealand Special Publication No. 10. Lincoln University Press, Canterbury, pp 1–33

    Google Scholar 

  • Bonneau M (1977) Rapport final DGRST-CNRS. Modification de fertilité des sols sous boisements artificiels de résineux purs. Action concertée Equilibres Biologiques. 88p

  • Cannell MGR (1982) World biomass and primary production data. Academic Press Publishers, London, 391p

    Google Scholar 

  • Cunia T (1987) On the error of forest inventory estimates: double sampling with regression. In: Wharton EH, Cunia T (eds) Estimating tree biomass regressions and their error. Proceedings of the workshop on tree biomass regression functions and their contribution to the error of forest inventory estimates, Syracuse, New-York, May 26–30, 1986. USDA Forest Service General Technical Report no. 117, pp 79–87

  • D'Agostino RB, Belanger A, D'Agostino RB jr (1990) A suggestion for using powerful and informative tests of normality. Am Stat 44(4):316–321

    Google Scholar 

  • Décourt N (1967) Table de production pour le Douglas dans le Nord-Est du Massif central. Rev For Fr XXIV(8–9):547–557

    Article  Google Scholar 

  • Dhôte J-F (1997) Effet des éclaircies sur le diamètre dominant dans les futaies régulières du hêtre ou de chêne sessile. Rev For Fr XLIX-6:557–578

    Google Scholar 

  • Dhôte J-F (1999) Compétition entre classes sociales chez le chêne sessile et le hêtre. Rev For Fr LI(2):309–325

    Google Scholar 

  • Duchaufour Ph, Bonneau M (1959) Une nouvelle méthode de dosage du phosphore assimilable dans les sols forestiers. Bull AFES 4:193–198

    Google Scholar 

  • Eriksson HM, Rosen K (1994) Nutrient distribution in a Swedish tree species experiment. Plant Soil 164:51–59

    CAS  Google Scholar 

  • Fisher RF, Binkley D (2000) Ecology and management of forest soils, 3 edn. Wiley, New York, 489p

    Google Scholar 

  • Hagen-Thorn A, Armolaitis K, Callesen I, Stjernquist I (2004) Macronutrients in tree stems and foliage: a comparative study of six temperate forest species planted at the same sites. Ann For Sci 61:489–498

    Article  CAS  Google Scholar 

  • Heller R (1969) Biologie végétale: III Nutrition et métabolisme. Masson, Paris, 578p

    Google Scholar 

  • IFN (2003) Annual Report of the French National Inventory. Available at http://www.ifn.fr/. 40p

  • Kozak A (1970) Methods for ensuring additivity of biomass components by regression analysis. For Chron 46(5):402–404

    Google Scholar 

  • Larsen S (1967) Soil phosphorus. Adv Agron 19:151–210

    CAS  Google Scholar 

  • Larson PR (1963) Stem form development of forest trees. For Sci Monogr 5:42p

    Google Scholar 

  • Le Goaster S, Dambrine E, Ranger J (1991) Croissance et nutrition minérale d'un peuplement d'épicéa sur sol pauvre. I: Evolution de la biomasse et dynamique d'incorporation d'éléments minéraux. Acta Oecol Oecol Plant 12(6):771–789

    Google Scholar 

  • Mengel K, Kirby EA (1978) Principle of plant nutrition. International Potash Institute, Bern, Switzerland

    Google Scholar 

  • Nambiar EKS, Bowen GD (1986) Uptake, distribution and retranslocation of nitrogen by Pinus radiata from15N-labelled fertilizer applied to podzolized sandy soil. For Ecol Manage 15:269–284

    Article  Google Scholar 

  • Návar J, Méndez E, Dale V (2002) Estimating stand biomass in the Tamulipan thornscrub of north-eastern Mexico. Ann For Sci 59(8):813–821

    Article  Google Scholar 

  • Nihlgård B (1972) Plant biomass, primary production and distribution of chemical elements in a beech and a planted spruce forest in South Sweden. Oikos 23:69–81

    Google Scholar 

  • Pardé J, Bouchon J (1988) Dendrométrie, 2nd edn. Engref, Nancy, France, ISBN 2-85710-025-6. 328p

    Google Scholar 

  • Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. For Sci 45(4):573–593

    Google Scholar 

  • Parresol BR (2001) Additivity of nonlinear biomass equations. Can J For Res 31:865–878

    Article  Google Scholar 

  • Perala DA, Alban DH (1982) Biomass, nutrient distribution and litterfall in populus, pinus and picea stands on two different soils in Minnesota. Plant Soil 64:177–192

    Article  CAS  Google Scholar 

  • Ponette Q, Ranger J, Ottorini JM, Ulrich E (2001) Aboveground biomass and nutrient content of five Douglas-fir stands in France. For Ecol Manage 142(1–3):109–127

    Article  Google Scholar 

  • Ranger J, Cuirin G, Bouchon J, Colin-Belgrand M, Gelhaye D, Mohamed Ahamed D (1992) Biomasse et minéralomasse d'une plantation d'épicéa commun (Picea abies Karst.) de forte production dans les Vosges (France). Ann Sci For 49:651–668

    Google Scholar 

  • Ranger J, Marques R, Colin-Belgrand M, Flammang N, Gelhaye D (1995) The dynamics of biomass and nutrient accumulation in a Douglas-fir (Pseudotsuga menziesii Franco) stand studied using a chronosequence approach. For Ecol Manage 72:167–183

    Article  Google Scholar 

  • Ranger J (ed), Aandreux F (ed), Bienaime S, Berthelin J, Bonnaud P, Boudot JP, Brechet C, Buee M, Calmet JP, Chaussod R, Gelhaye D, Gelhaye L, Gerard F, Jaffra in J, Lejon D, Le Tacon F, Leveque J, Maurice JP, Merlet D, Moukoumi J, Munier-Lamy C, Nourrisson G, Pollier B, Ranjard L, Simonsson M, Turpault MP, Vairelles D, Zeller B (2004) Effet des substitutions d'essence sur le fonctionnement organo-minéral de l'écosystème forestier, sur les communautés microbiennes et sur la diversité des communautés fongiques mycorhiziennes et saprophytes (cas du dispositif expérimental de Breuil – Morvan). Rapport final du contrat INRA-GIP Ecofor 2001–24, n°INRA 1502A Nancy: INRA Champenoux, Biogéochimie des Ecosystèmes forestiers, 202 p

  • Reed DD, Green EJ (1985) A method forcing additivity of biomass tables when using non-linear models. Can J For Res 15(6):1184–1187

    Google Scholar 

  • Saint-André L, Thongo M'Bou, Mabiala A, Mouvondy W, Jourdan C, Roupsard O, Deleporte Ph, Hamel O, Nouvellon Y (2005) Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For Ecol Manage 205:199–214

    Article  Google Scholar 

  • Safou-Matondo R, Deleporte P, Laclau JP, Bouillet JP (2005) Hybrid and clonal variability of nutrient content and nutrient use efficiency in Eucalyptus stands in Congo. For Ecol Manage 210:193–204

    Article  Google Scholar 

  • SAS Institute, Inc. (1990) Sas© Procedures Guide, Version 6, 3 edn. SAS Institute Inc., Cry, NC, 705p

    Google Scholar 

  • Satoo T, Madgwick HAI (1982) Forest biomass. Martinus Nijhoff, The Hague

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    MATH  Google Scholar 

  • Switzer GL, Nelson LE (1972) Nutrient accumulation and cycling in loblolly Pine (Pinus taeda L) Plantation Ecosystems: The first twenty years. Soil Sci Soc Am Proc 36:143–147

    CAS  Google Scholar 

  • Wallace A, Frolich E, Lunt OR (1966) Calcium requirements of higher plants. Nature 209:634

    CAS  ADS  Google Scholar 

  • Weissen (1991) Le fichier écologique des essences vol(2). Ministère de la Région Wallone Editeur; DG Resources Naturelles de l'Environnement, Division de la Nature et des Forêts Namur, Belgique, 190p

Download references

Acknowledgements

We would like to thank Maurice Bonneau's team from INRA Nancy who installed the experimental design in 1976 for a project called “Modifications of soil fertility induced by artificial mono-specific coniferous plantations”, financed by the Ministry of Research; the local team of the Office National des Forêts for facilitating all of the technical operations at the site; the GIP-Ecofor for sustaining this research site which belongs to the “Observatoire de Recherche pour l'Environnement” network (ORE) of the Ministry of Research; Gail Wagman for the English revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ranger.

Additional information

Communicated by R. Hampp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sicard, C., Saint-Andre, L., Gelhaye, D. et al. Effect of initial fertilisation on biomass and nutrient contentof Norway spruce and Douglas-fir plantations at the same site. Trees 20, 229–246 (2006). https://doi.org/10.1007/s00468-005-0030-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-005-0030-6

Keywords

Navigation