Skip to main content
Log in

Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Tracheid production of balsam fir in the Québec boreal forest (Canada) was studied by repeated cell analysis to investigate the influence of meteorological variables during the growing seasons 1998 to 2000. Wood micro-cores were extracted on a weekly basis throughout the growing season and sections were prepared in order to count the total number of cells produced. From the weekly cell number obtained, the rate of tracheid production was calculated and correlated with meteorological variables. The average total number of cells produced per year was reasonably uniform, increasing only from 36.6 in 1998, to 41.1 in 2000. However, different cell production rates were noted during the growing season. Regression analysis revealed that the cell production rate was largely dependent on minimum air and soil temperature during most of the cell production period. Mean and maximum temperature had less influence on cell production. Moreover, the influence of temperature was higher during earlywood production mainly from the end of May to mid-July. Lagging the weather data by 1–5 days decreased the relationship between temperature and cell production, showing the high correspondence with the same interval where cell production was measured. These results suggest a fast response of the cambium to temperature variation during tree-ring formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antonova GF, Stasova VV (1993) Effects of environmental factors on wood formation in Scots pine stems. Trees 7:214–219

    Article  Google Scholar 

  • Antonova GF, Stasova VV (1997) Effects of environmental factors on wood formation in larch (Larix sibirica Ldb.) stems. Trees 11:462–468

    Article  Google Scholar 

  • Archambault S, Bergeron Y (1992) An 802-year tree-ring chronology from the Quebec boreal forest. Can J For Res 22:674–682

    Google Scholar 

  • Brooks JR, Flanagan LB, Ehleringer JR (1998) Responses of boreal conifers to climate fluctuations : indications from tree-ring widths and carbon isotope analyses. Can J For Res 28:524–533

    Article  Google Scholar 

  • Camarero JJ, Guerrero-Campo J, Gutiérrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the Central Spanish Pyrenees. Arct Alp Res 30:1–10

    Google Scholar 

  • Cheng C, Gordon IL (2000) The Richards function and quantitative analysis of germination and dormancy in meadowfoam (Limnanthes alba). Seed Sci Res 10:265–277

    Google Scholar 

  • Creber GT, Chaloner WO (1990) Environmental influences on cambial activity. The vascular cambium. Wiley, New York, pp 159–189

    Google Scholar 

  • Dang QL, Lieffers VJ (1989) Climate and annual ring growth of black spruce in some Alberta peatlands. Can J Bot 67:1885–1889

    Google Scholar 

  • D’Arrigo RD, Jacoby GC, Free RM (1992) Tree-ring width and maximum latewood density at the North American tree line: parameters of climatic change. Can J For Res 22:1290–1296

    Google Scholar 

  • Denne MP (1971) Temperature and tracheid development in Pinus sylvestris seedlings. J Exp Bot 22:362–370

    Google Scholar 

  • Denne MP (1974) Effects of light intensity of tracheid dimensions in Picea sitchensis. Ann Bot 38:337–345

    Google Scholar 

  • Deslauriers A (2003) Dynamique de la croissance radiale et influence météorologique quotidienne chez le sapin baumier (Abies balsamea (L.) Mill.) en forêt boréale. Ph.D. dissertation. Université du Québec à Chicoutimi, Chicoutimi, Canada

  • Deslauriers A, Morin H, Bégin Y (2003a) Cellular phenology of annual ring formation of Abies balsamea in the Québec boreal forest (Canada). Can J For Res 33:190–200

    Article  Google Scholar 

  • Deslauriers A, Morin H, Urbinati C, Carrer M (2003b) Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees 17:477–484

    Google Scholar 

  • Domisch T, Finér L, Lehto T (2001) Effect of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) at the beginning of the growing season. Tree Physiol 21:465–472

    CAS  PubMed  Google Scholar 

  • Environnement Canada (1992) Sommaire métérologique mensuel, Chibougamau-Chapais, janvier-décembre 1992. Service Environnement atmosphérique, Environnement Canada, Ottawa, Ontario

  • Ford ED, Robards AW, Piney MD (1978) Influence of environmental factors on cell production and differentiation in the earlywood of Picea sitchensis. Ann Bot 42:683–692

    Google Scholar 

  • Hofgaard A, Tardif J, Bergeron Y (1999) Dendroclimatic response of Picea mariana and Pinus banksiana along a latitudinal gradient in the eastern Canadian boreal forest. Can J For Res 29:1333–1346

    Article  Google Scholar 

  • Horacek P, Slezingerova J, Gandelova L (1999) Effects of environment on the xylogenesis of Norway spruce (Picea abies [L.] Karst.). In: Wimmer R, Vetter R (eds) Tree-ring analysis: biological, methodological and environmental aspects. CABI, Wallingford, pp 33–53

  • Kirdyanov AV, Hughes M, Vaganov EA, Schweingruber FH, Silkin P (2003) The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees 17:61–69

    Article  Google Scholar 

  • Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic, San Diego

    Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic, New York

    Google Scholar 

  • Landhäusser SM, Wein RW, Lange P (1996) Gas exchange and growth of three arctic tree-line tree species under different soil temperature and drought preconditioning regimes. Can J Bot 74:686–693

    Google Scholar 

  • Mäkinen H, Nöjd P, Kahle HP, Neumann U, Tveite B, Mielikäinen K, Röhle H, Spiecker H (2003) Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst. in central and northern Europe. Trees 17:173–184

    Google Scholar 

  • Man R, Lieffers VJ (1997) Seasonal variations of photosynthetic capacities of white spruce (Picea glauca) and jack pine (Pinus banksiana) saplings. Can J Bot 75:1766–1771

    Google Scholar 

  • Morin H (1994) Dynamics of balsam fir forest in relation to spruce budworm outbreaks in the Boreal Zone of Quebec. Can J For Res 24:730–741

    Google Scholar 

  • Richardson SD, Dinwoodie JM (1960) Studies on the physiology of xylem development. I. The effects of night temperature on tracheid size and wood density in conifers. J Inst Wood Sci 6:3–13

    Google Scholar 

  • Rossi S, Deslauriers A, Morin H (2003) Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21:1–7

    Google Scholar 

  • SAS (1990) SAS/STAT user’s guide, version 6, 4th edn., vol. 2. SAS, Cary, N.C.

  • Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signalling. Plant Physiol 117:113–121

    Article  CAS  PubMed  Google Scholar 

  • Vaganov EA (1990) The tracheidogram method in tree-ring analysis and its application. In: Cook R, Kairiukstis L (eds) Methods of dendrochronology. Kluwer, Drodrecht, pp 63–76

    Google Scholar 

  • Vaganov EA (1996) Analysis of seasonal tree-ring formation and modeling in dendrochronology. In: Dean JS, Meko DM, Swetnam TW (eds) Tree-rings environment and humanity. Proc Int Conf, Tucson, Arizona, 17–21 May. Radiocarbon, pp 73–87

  • Wang L, Payette S, Bégin Y (2002) Relationship between anatomical and densitometric characteristics of black spruce and summer temperature at tree line in northern Québec. Can J For Res 32:477–486

    Article  Google Scholar 

  • Wodzicki TJ (1971) Mechanism of xylem differentiation in Pinus silvestris L. J Exp Bot 22:670–687

    Google Scholar 

  • Zabuga VF, Zabuga GA (1990) Dynamics of morphometric indices of the annual ring of Scotch pine in the forest-steppe of the Western Lake Baikal region. Lesovedenie 2:46–53

    Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Upper Saddle River, N.J.

    Google Scholar 

Download references

Acknowledgements

This work was funded by the Consortium de recherche sur la forêt boréale commerciale, the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada and Le Fonds Québécois de la Recherche sur la Nature et les Technologies

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Deslauriers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deslauriers, A., Morin, H. Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees 19, 402–408 (2005). https://doi.org/10.1007/s00468-004-0398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-004-0398-8

Keywords

Navigation