Skip to main content
Log in

Should sodium removal in peritoneal dialysis be estimated from the ultrafiltration volume?

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

In peritoneal dialysis (PD), ultrafiltration (UF) volume is the sum of solute-free- and solute-coupled-water removal, a dynamic process throughout the entire dwell exerted via aquaporin-1 (AQP1) and small pores, respectively. Determination of sodium sieving is used as a parameter for AQP1 function analysis, while coupled water removal is essential for adequate sodium and water balance and thus blood pressure control. The diffusive capacity of glucose via the small pores determines the dynamic crystalloid osmotic gradient. The osmotic conductance, i.e., milliliter of UF per gram of glucose absorbed, quantifies cooperation between small-pores and AQP1 channels. In continuous ambulatory peritoneal dialysis, with dwell times beyond glucose-induced sodium-sieving effects, approximate dialytic sodium removal (DSR) may be estimated from the UF volume (in average 100 mmol Na/L UF), while DSR is lower, with shorter cycle times, in automated PD (APD); therefore, effluent sodium concentrations should be measured. Applying dialysis mechanics, i.e., varying dwell time and dwell volume—as proposed in adapted APD to the PD prescription—may provide unmatched high DSR relative to UF volume, findings which are not sufficiently explained by the three-pore model of PD. Overall DSR should therefore be measured rather than estimated from UF volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Biesen W, Heimburger O, Krediet R, Rippe B, La Milia V, Covic A, Vanholder R (2010) Evaluation of peritoneal membrane characteristics: clinical advice for prescription management by the ERBP working group. Nephrol Dial Transplant 25:2052–2062

    Article  PubMed  Google Scholar 

  2. Lo WK, Ho YW, Li CS, Wong KS, Chan TM, Yu AW, Ng FS, Cheng IK (2003) Effect of Kt/V on survival and clinical outcome in CAPD patients in a randomized prospective study. Kidney Int 64:649–656

    Article  PubMed  Google Scholar 

  3. Paniagua R, Amato D, Vonesh E, Correa-Rotter R, Ramos A, Moran J, Mujais S (2002) Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J Am Soc Nephrol 13:1307–1320

    CAS  PubMed  Google Scholar 

  4. Kircelli F, Asci G, Yilmaz M, Sevinc Ok E, Demirci MS, Toz H, Akcicek F, Ok E, Ozkahya M (2011) The impact of strict volume control strategy on patient survival and technique failure in peritoneal dialysis patients. Blood Purif 32:30–37

    Article  PubMed  Google Scholar 

  5. Paniagua R, Ventura MD, Avila-Diaz M, Hinojosa-Heredia H, Mendez-Duran A, Cueto-Manzano A, Cisneros A, Ramos A, Madonia-Juseino C, Belio-Caro F, Garcia-Contreras F, Trinidad-Ramos P, Vazquez R, Ilabaca B, Alcantara G, Amato D (2010) NT-proBNP, fluid volume overload and dialysis modality are independent predictors of mortality in ESRD patients. Nephrol Dial Transplant 25:551–557

    Article  CAS  PubMed  Google Scholar 

  6. Van Biesen W, Williams JD, Covic AC, Fan S, Claes K, Lichodziejewska-Niemierko M, Verger C, Steiger J, Schoder V, Wabel P, Gauly A, Himmele R (2011) Fluid status in peritoneal dialysis patients: the European Body Composition Monitoring (EuroBCM) study cohort. PLoS One 6:e17148

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ronco C, Verger C, Crepaldi C, Pham J, De Los Rios T, Gauly A, Wabel P, Van Biesen W, Group I-PS (2015) Baseline hydration status in incident peritoneal dialysis patients: the initiative of patient outcomes in dialysis (IPOD-PD study) dagger. Nephrol Dial Transplant 30:849–858

    Article  Google Scholar 

  8. Fischbach M, Zaloszyc A, Schaefer B, Schmitt CP (2014) Optimizing peritoneal dialysis prescription for volume control: the importance of varying dwell time and dwell volume. Pediatr Nephrol 29:1321–1327

    Article  PubMed  Google Scholar 

  9. Fischbach M, Schmitt CP, Shroff R, Zaloszyc A, Warady B (2016) Increasing sodium removal on peritoneal dialysis: applying dialysis mechanics to the PD prescription. Kidney Int doi. doi:10.1016/j.kint.2015.12.032

    Google Scholar 

  10. Ates K, Nergizoglu G, Keven K, Sen A, Kutlay S, Erturk S, Duman N, Karatan O, Ertug AE (2001) Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int 60:767–776

    Article  CAS  PubMed  Google Scholar 

  11. Brown EA, Davies SJ, Rutherford P, Meeus F, Borras M, Riegel W, Divino Filho JC, Vonesh E, van Bree M (2003) Survival of functionally anuric patients on automated peritoneal dialysis: the European APD Outcome Study. J Am Soc Nephrol 14:2948–2957

    Article  PubMed  Google Scholar 

  12. Rippe B, Venturoli D, Simonsen O, de Arteaga J (2004) Fluid and electrolyte transport across the peritoneal membrane during CAPD according to the three-pore model. Perit Dial Int 24:10–27

    CAS  PubMed  Google Scholar 

  13. Rippe B (1993) A three-pore model of peritoneal transport. Perit Dial Int 13(Suppl 2):S35–S38

    PubMed  Google Scholar 

  14. Coester AM, Smit W, Struijk DG, Krediet RT (2009) Peritoneal function in clinical practice: the importance of follow-up and its measurement in patients. Recommendations for patient information and measurement of peritoneal function. NDT Plus 2:104–110

    PubMed  PubMed Central  Google Scholar 

  15. Schaefer B, Bartosova M, Macher-Goeppinger S, Ujszaszi A, Wallwiener M, Nyarangi-Dix J, Sallay P, Burkhardt D, Querfeld U, Pfeifle V, Lahrmann B, Schwenger V, Wühl E, Schaefer F, Holland-Cunz S, Schmitt CP (2016) Quantitative Histomorphometry of the Healthy Peritoneum. Sci Rep doi. doi:10.1038/srep21344

    Google Scholar 

  16. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, Mackenzie RK, Williams GT, Peritoneal Biopsy Study Group (2002) Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 13(2):470–479

    PubMed  Google Scholar 

  17. Fischbach M, Warady BA (2009) Peritoneal dialysis prescription in children: bedside principles for optimal practice. Pediatr Nephrol 24:1633–1642; quiz 1640, 1642

  18. Fischbach M, Desprez P, Donnars F, Hamel G, Geisert J (1994) Optimization of CCPD prescription in children using peritoneal equilibration test. Adv Perit Dial 10:307–309

    CAS  PubMed  Google Scholar 

  19. La Milia V, Pozzoni P, Virga G, Crepaldi M, Del Vecchio L, Andrulli S, Locatelli F (2006) Peritoneal transport assessment by peritoneal equilibration test with 3.86% glucose: a long-term prospective evaluation. Kidney Int 69:927–933

    Article  PubMed  Google Scholar 

  20. Waniewski J, Paniagua R, Stachowska-Pietka J, Ventura MD, Avila-Diaz M, Prado-Uribe C, Mora C, Garcia-Lopez E, Lindholm B (2013) Threefold peritoneal test of osmotic conductance, ultrafiltration efficiency, and fluid absorption. Perit Dial Int 33:419–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fischbach M, Haraldsson B (2001) Dynamic changes of the total pore area available for peritoneal exchange in children. J Am Soc Nephrol 12:1524–1529

    CAS  PubMed  Google Scholar 

  22. Rippe B (2009) How to assess transport in animals? Perit Dial Int 29(Suppl2):S32–S35

    PubMed  Google Scholar 

  23. Rippe B (2006) Is intraperitoneal pressure important? Perit Dial Int 26:317–319, discussion 411

    PubMed  Google Scholar 

  24. Fischbach M, Terzic J, Laugel V, Escande B, Dangelser C, Helmstetter A (2003) Measurement of hydrostatic intraperitoneal pressure: a useful tool for the improvement of dialysis dose prescription. Pediatr Nephrol 18:976–980

    Article  CAS  PubMed  Google Scholar 

  25. Outerelo MC, Gouveia R, Teixeira E, Costa F, Ramos A (2014) Intraperitoneal pressure has a prognostic impact on peritoneal dialysis patients. Perit Dial Int 34:652–654

    Article  PubMed  PubMed Central  Google Scholar 

  26. Parikova A, Smit W, Struijk DG, Zweers MM, Krediet RT (2005) The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis. Kidney Int 68:1849–1856

    Article  PubMed  Google Scholar 

  27. Fischbach M, Terzic J, Bergere V, Gaugler C, Provot E (1999) The optimal approach to peritoneal dialysis prescription in children. Perit Dial Int 19(Suppl 2):S462–S466

    PubMed  Google Scholar 

  28. Domenici A, Scabbia L, Sivo F, Falcone C, Punzo G, Mene P (2012) Determinants of sodium removal with tidal automated peritoneal dialysis. Adv Perit Dial 28:16–20

    PubMed  Google Scholar 

  29. Wang T, Waniewski J, Heimburger O, Werynski A, Lindholm B (1997) A quantitative analysis of sodium transport and removal during peritoneal dialysis. Kidney Int 52:1609–1616

    Article  CAS  PubMed  Google Scholar 

  30. Konings CJ, Kooman JP, Schonck M, Gladziwa U, Wirtz J, van den Wall Bake AW, Gerlag PG, Hoorntje SJ, Wolters J, van der Sande FM, Leunissen KM (2003) Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int 4:1556–1563

    Article  Google Scholar 

  31. Davies S, Carlsson O, Simonsen O, Johansson AC, Venturoli D, Ledebo I, Wieslander A, Chan C, Rippe B (2009) The effects of low-sodium peritoneal dialysis fluids on blood pressure, thirst and volume status. Nephrol Dial Transplant 24:1609–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakayama M, Kasai K, Imai H (2009) Novel low Na peritoneal dialysis solutions designed to optimize Na gap of effluent: kinetics of Na and water removal. Perit Dial Int 29:528–535

    CAS  PubMed  Google Scholar 

  33. Rutkowski B, Tam P, Van der Sande FM, Vychtil A, Schwenger V, Himmele R, Gauly A on behalf of the low sodium balance study group (2015) Low-sodium versus standard-sodium peritoneal dialysis solution in hypertensive patients: a randomized controlled trial. Am J Kidney Dis doi. doi:10.1053/j.ajkd.2015.07.031

    Google Scholar 

  34. Dong J, Li Y, Yang Z, Luo J, Zuo L (2011) Time-dependent associations between total sodium removal and mortality in patients on peritoneal dialysis. Perit Dial Int 31:412–421

    Article  PubMed  Google Scholar 

  35. Fischbach M, Issad B, Dubois V, Taamma R (2011) The beneficial influence on the effectiveness of automated peritoneal dialysis of varying the dwell time (short/long) and fill volume (small/large): a randomized controlled trial. Perit Dial Int 31:450–458

    Article  PubMed  Google Scholar 

  36. Van Biesen W, Williams JD, Covic A, Fan S, Claes K, Lichodziejewska-Niemierko M, Verge C, Steiger J, Schoder V, Wabel P, Gauly A, Himmele R, on behalf of the EuroBCM study group (2011) Fluid status in peritoneal dialysis patients: the European Body Composition Monitoring (EuroBCM) Study Cohort. PlosOne 6:e17148

    Article  Google Scholar 

  37. Zaloszyc A, Schaefer B, Schaefer F, Krid S, Salomon R, Niaudet P, Schmitt CP, Fischbach M (2013) Hydration measurement by bioimpedance spectroscopy and blood pressure management in children on hemodialysis. Pediatr Nephrol 28:2169–2177

    Article  PubMed  Google Scholar 

  38. Zaloszyc A, Schmitt C, Schaefer B, Doutey A, Fischbach M (2016) The concept of adapted APD (A-APD): prove the principle. Perit Dial Int Suppl ISPD 2016 Melbourne

  39. Burnett RW, Covington AK, Fogh-Andersen N, Külpmann WR, Lewenstam A, Maas AH, Müller-Plathe O, VanKessel AL, Zijlstra WG (2000) Use of ion-selective electrodes for blood-electrolyte analysis. Recommandations for nomenclature, definitions and conventions. International Federation of Clinical Chemestry and Laboratory Medecine (IFCC). Scientific Division Working Group on Selective Electrodes. Clin Chem Lab Med 38:363–370

    CAS  PubMed  Google Scholar 

  40. La Milia V, Di Filippo S, Crepaldi M, Andrulli S, Marai P, Bacchini G, Del Vecchio L, Locatelli F (2000) Spuriious estimations of sodium removal during CAPD when [Na](+) is measured by electrode methodology. Kidney Int 58:2192199

    Article  Google Scholar 

  41. Persaud J, Thomas M, Davenport A (2014) Indirect ion selective electrode methods potentially overestimate peritoneal dialysate sodium losses. Ther Apher Dial 18:321–325

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Fischbach.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Answers

1. a

2. d

3. c

4. a, b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischbach, M., Zaloszyc, A., Schaefer, B. et al. Should sodium removal in peritoneal dialysis be estimated from the ultrafiltration volume?. Pediatr Nephrol 32, 419–424 (2017). https://doi.org/10.1007/s00467-016-3378-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3378-5

Keywords

Navigation