Skip to main content
Log in

Body composition monitoring-derived urea distribution volume in children on chronic hemodialysis

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Modern hemodialysis (HD) machines are able to measure ionic dialysance online and thereby continuously monitor Kt/V. The accuracy of measurement depends on the input of the correct urea distribution volume (V), available from anthropometric equations and body composition monitoring (BCM). The latter method, however, has not been validated in children.

Methods

We compared V determined by BCM to that calculated using four different anthropometric formulas (Morgenstern, Mellits and Cheek, Hume–Weyers and Watson equations) in 23 pediatric HD patients. We also compared online Kt/V using BCM-derived V with the Kt/V calculated from pre- and post-dialytic urea concentrations using the single-pool second-generation Daugirdas equation.

Results

The V calculated by the Morgenstern equation was similar to that derived by BCM, with a mean difference of −0.7 % (95 % limits of agreement −11.7 to 10.3 %). In contrast, the V calculated by the other equations was 5.4, 6.2 and 18 %, respectively higher than the BCM-derived V. The mean difference between Kt/V calculated using the Daugirdas equation and online Kt/V determination based on BCM-derived V data  was 0.10 (95 % limits of agreement −0.50 to 0.70 %).

Conclusions

In our pediatric HD patients the V measured by BCM was in agreement with that calculated using the Morgenstern equation, which is the only equation which has been validated to date in children on dialysis. Online determination of Kt/V using a BCM-derived V largely agreed with that calculated by the Daugirdas equation. We therefore conclude that the former approach is suitable for frequent online assessment of dialytic small solute clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Owen WF Jr, Lew NL, Liu Y, Lowrie EG, Lazarus JM (1993) The urea reduction ratio and serum albumin concentration as predictors of mortality in patients undergoing hemodialysis. N Engl J Med 329:1001–1006

    Article  PubMed  Google Scholar 

  2. Moret KE, Grootendorst DC, Dekker FW, Boeschoten EW, Krediet RT, Houterman S, Beerenhout CH, Kooman JP (2012) Agreement between different parameters of dialysis dose in achieving treatment targets: results from the NECOSAD study. Nephrol Dial Transplant 27:1145–1152

    Article  PubMed  Google Scholar 

  3. Kimata N, Karaboyas A, Bieber BA, Pisoni RL, Morgenstern H, Gillespie BW, Saito A, Akizawa T, Fukuhara S, Robinson BM, Port FK, Akiba T (2014) Gender, low Kt/V, and mortality in Japanese hemodialysis patients: opportunities for improvement through modifiable practices. Hemodial Int 18:596–606

    Article  PubMed  Google Scholar 

  4. European Best Practice Guidelines Expert Group on Hemodialysis, European Renal Association (2002) Section II. Haemodialysis adequacy. Nephrol Dial Transplant 17[Suppl 7]:16–31

    Google Scholar 

  5. Fischbach M, Edefonti A, Schroder C, Watson A (2005) Hemodialysis in children: general practical guidelines. Pediatr Nephrol 20:1054–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tattersall J, Martin-Malo A, Pedrini L, Basci A, Canaud B, Fouque D, Haage P, Konner K, Kooman J, Pizzarelli F, Tordoir J, Vennegoor M, Wanner C, ter Wee P, Vanholder R (2007) EBPG guideline on dialysis strategies. Nephrol Dial Transplant 22[Suppl 2]:ii5–21

    PubMed  Google Scholar 

  7. Fischbach M, Zaloszyc A, Schaefer B, Schmitt CP (2011) Erratum to “optimal hemodialysis prescription: do children need more than a urea dialysis dose?”. Int J Nephrol 2011:702529

    Article  PubMed  PubMed Central  Google Scholar 

  8. Daugirdas JT (2014) Dialysis dosing for chronic hemodialysis: beyond Kt/V. Semin Dial 27:98–107

    Article  PubMed  Google Scholar 

  9. Goldstein SL, Brewer ED (2000) Logarithmic extrapolation of a 15-minute postdialysis BUN to predict equilibrated BUN and calculate double-pool Kt/V in the pediatric hemodialysis population. Am J Kidney Dis 36:98–104

    Article  CAS  PubMed  Google Scholar 

  10. Hemodialysis Adequacy, Work Group (2006) Clinical practice guidelines for hemodialysis adequacy, update 2006. Am J Kidney Dis 48[Suppl 1]:S2–90

    Google Scholar 

  11. Geddes CC, Traynor J, Walbaum D, Fox JG, Mactier RA (2000) A new method of post-dialysis blood urea sampling: the ‘stop dialysate flow’ method. Nephrol Dial Transplant 15:517–523

    Article  CAS  PubMed  Google Scholar 

  12. Maduell F, Garcia-Valdecasas J, Garcia H, Hernandez-Jaras J, Siguenza F, del Pozo C, Giner R, Moll R, Garrigos E (1997) Validation of different methods to calculate Kt/V considering postdialysis rebound. Nephrol Dial Transplant 12:1928–1933

    Article  CAS  PubMed  Google Scholar 

  13. Goldstein SL, Brem A, Warady BA, Fivush B, Frankenfield D (2006) Comparison of single-pool and equilibrated Kt/V values for pediatric hemodialysis prescription management: analysis from the Centers for Medicare & Medicaid Services Clinical Performance Measures Project. Pediatr Nephrol 21:1161–1166

    Article  PubMed  Google Scholar 

  14. Daugirdas JT, Schneditz D (1995) Overestimation of hemodialysis dose depends on dialysis efficiency by regional blood flow but not by conventional two pool urea kinetic analysis. ASAIO J 41:M719–724

    Article  CAS  PubMed  Google Scholar 

  15. Mercadal L, Ridel C, Petitclerc T (2005) Ionic dialysance: principle and review of its clinical relevance for quantification of hemodialysis efficiency. Hemodial Int 9:111–119

    Article  PubMed  Google Scholar 

  16. Maduell F, Vera M, Arias M, Serra N, Blasco M, Bergada E, Fontsere N, Cases A, Campistol JM (2008) Influence of the ionic dialysance monitor on Kt measurement in hemodialysis. Am J Kidney Dis 52:85–92

    Article  CAS  PubMed  Google Scholar 

  17. Uhlin F, Fridolin I, Magnusson M, Lindberg LG (2006) Dialysis dose (Kt/V) and clearance variation sensitivity using measurement of ultraviolet-absorbance (on-line), blood urea, dialysate urea and ionic dialysance. Nephrol Dial Transplant 21:2225–2231

    Article  CAS  PubMed  Google Scholar 

  18. Marsenic O, Booker K, Studnicka K, Wilson D, Beck A, Swanson T, Henry D, Turman M (2011) Use of ionic dialysance to calculate Kt/V in pediatric hemodialysis. Hemodial Int 15[Suppl 1]:S2–8

    Article  PubMed  Google Scholar 

  19. Chamney PW, Wabel P, Moissl UM, Muller MJ, Bosy-Westphal A, Korth O, Fuller NJ (2007) A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am J Clin Nutr 85:80–89

    CAS  PubMed  Google Scholar 

  20. Moissl UM, Wabel P, Chamney PW, Bosaeus I, Levin NW, Bosy-Westphal A, Korth O, Muller MJ, Ellegard L, Malmros V, Kaitwatcharachai C, Kuhlmann MK, Zhu F, Fuller NJ (2006) Body fluid volume determination via body composition spectroscopy in health and disease. Physiol Meas 27:921–933

    Article  PubMed  Google Scholar 

  21. Wizemann V, Rode C, Wabel P (2008) Whole-body spectroscopy (BCM) in the assessment of normovolemia in hemodialysis patients. Contrib Nephrol 161:115–118

    Article  PubMed  Google Scholar 

  22. Morgenstern BZ, Wuhl E, Nair KS, Warady BA, Schaefer F (2006) Anthropometric prediction of total body water in children who are on pediatric peritoneal dialysis. J Am Soc Nephrol 17:285–293

    Article  PubMed  Google Scholar 

  23. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, Roche AF, Johnson CL (2002) 2000 CDC Growth Charts for the United States: methods and development. Vital Health Stat 11:1–190

    Google Scholar 

  24. Chamney PW, Kramer M, Rode C, Kleinekofort W, Wizemann V (2002) A new technique for establishing dry weight in hemodialysis patients via whole body bioimpedance. Kidney Int 61:2250–2258

    Article  PubMed  Google Scholar 

  25. Mellits ED, Cheek DB (1970) The assessment of body water and fatness from infancy to adulthood. Monogr Soc Res Child Dev 35:12–26

    Article  CAS  PubMed  Google Scholar 

  26. Morgenstern BZ, Mahoney DW, Warady BA (2002) Estimating total body water in children on the basis of height and weight: a reevaluation of the formulas of mellits and cheek. J Am Soc Nephrol 13:1884–1888

    Article  PubMed  Google Scholar 

  27. Hume R, Weyers E (1971) Relationship between total body water and surface area in normal and obese subjects. J Clin Pathol 24:234–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Watson PE, Watson ID, Batt RD (1980) Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am J Clin Nutr 33:27–39

    CAS  PubMed  Google Scholar 

  29. Daugirdas JT (1993) Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J Am Soc Nephrol 4:1205–1213

    CAS  PubMed  Google Scholar 

  30. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  CAS  PubMed  Google Scholar 

  31. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org

  32. Peritoneal Dialysis Adequacy Work Group (2006) Clinical practice guidelines for peritoneal dialysis adequacy. Am J Kidney Dis 48[Suppl 1]:S98–129

    Google Scholar 

  33. Collins AJ, Ma JZ, Umen A, Keshaviah P (1994) Urea index and other predictors of hemodialysis patient survival. Am J Kidney Dis 23:272–282

    Article  CAS  PubMed  Google Scholar 

  34. Hakim RM, Breyer J, Ismail N, Schulman G (1994) Effects of dose of dialysis on morbidity and mortality. Am J Kidney Dis 23:661–669

    Article  CAS  PubMed  Google Scholar 

  35. Parker TF 3rd, Husni L, Huang W, Lew N, Lowrie EG (1994) Survival of hemodialysis patients in the United States is improved with a greater quantity of dialysis. Am J Kidney Dis 23:670–680

    Article  PubMed  Google Scholar 

  36. Davenport A (2013) Differences in prescribed Kt/V and delivered haemodialysis dose—why obesity makes a difference to survival for haemodialysis patients when using a ‘one size fits all’ Kt/V target. Nephrol Dial Transplant 28[Suppl 4]:iv219–223

    Article  PubMed  Google Scholar 

  37. Jialin W, Yi Z, Weijie Y (2012) Relationship between body mass index and mortality in hemodialysis patients: a meta-analysis. Nephron Clin Pract 121:c102–111

    Article  PubMed  Google Scholar 

  38. Lindley EJ, Chamney PW, Wuepper A, Ingles H, Tattersall JE, Will EJ (2009) A comparison of methods for determining urea distribution volume for routine use in on-line monitoring of haemodialysis adequacy. Nephrol Dial Transplant 24:211–216

    Article  CAS  PubMed  Google Scholar 

  39. Koubaa A, Potier J, de Preneuf H, Queffelou G, Garcia F, Petitclerc T (2010) Estimation of urea distribution volume in hemodialysis patients. Nephrol Ther 6:532–536

    Article  PubMed  Google Scholar 

  40. Ahrenholz P, Taborsky P, Bohling M, Rawer P, Ibrahim N, Gajdos M, Machek P, Sagova M, Gruber H, Moucka P, Rychlik I, Leimenstoll G, Vyskocil P, Toenne G, Possnickerova J, Woggan J, Riegel W, Schneider H, Wojke R (2011) Determination of dialysis dose: a clinical comparison of methods. Blood Purif 32:271–277

    Article  PubMed  Google Scholar 

  41. McIntyre CW, Lambie SH, Taal MW, Fluck RJ (2003) Assessment of haemodialysis adequacy by ionic dialysance: intra-patient variability of delivered treatment. Nephrol Dial Transplant 18:559–563

    Article  CAS  PubMed  Google Scholar 

  42. Creput C, Toledano D, Petitclerc T (2013) Ionic dialysance and determination of Kt/V in on-line hemodiafiltration with simultaneouspre- and post-dilution. Int J Artif Organs 36:327–334

    Article  CAS  PubMed  Google Scholar 

  43. Zaloszyc A, Schaefer B, Schaefer F, Krid S, Salomon R, Niaudet P, Schmitt CP, Fischbach M (2013) Hydration measurement by bioimpedance spectroscopy and blood pressure management in children on hemodialysis. Pediatr Nephrol 28:2169–2177

    Article  PubMed  Google Scholar 

  44. Daugirdas JT, Greene T, Depner TA, Chumlea C, Rocco MJ, Chertow GM, Hemodialysis Study G (2003) Anthropometrically estimated total body water volumes are larger than modeled urea volume in chronic hemodialysis patients: effects of age, race, and gender. Kidney Int 64:1108–1119

    Article  PubMed  Google Scholar 

  45. Daugirdas JT, Tattersall J (2010) Effect of treatment spacing and frequency on three measures of equivalent clearance, including standard Kt/V. Nephrol Dial Transplant 25:558–561

    Article  CAS  PubMed  Google Scholar 

  46. Goldstein SL (2004) Adequacy of dialysis in children: does small solute clearance really matter? Pediatr Nephrol 19:1–5

    Article  PubMed  Google Scholar 

  47. Vanholder R, Baurmeister U, Brunet P, Cohen G, Glorieux G, Jankowski J (2008) A bench to bedside view of uremic toxins. J Am Soc Nephrol 19:863–870

    Article  PubMed  Google Scholar 

  48. Daugirdas JT, Hanna MG, Becker-Cohen R, Langman CB (2010) Dose of dialysis based on body surface area is markedly less in younger children than in older adolescents. Clin J Am Soc Nephrol 5:821–827

    Article  PubMed  PubMed Central  Google Scholar 

  49. Daugirdas JT, Greene T, Chertow GM, Depner TA (2010) Can rescaling dose of dialysis to body surface area in the HEMO study explain the different responses to dose in women versus men? Clin J Am Soc Nephrol 5:1628–1636

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial disclosure

CPS has received research grants and lecture honoraria from Fresenius Medical Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Peter Schmitt.

Ethics declarations

Ethics statement

All data were obtained from medical records in accordance with the ethical principles of the Helsinki Declaration of 1975 and revised in 2000. Due to the retrospective nature of this study ethical review board approval or individual parental consent was not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaloszyc, A., Fischbach, M., Schaefer, B. et al. Body composition monitoring-derived urea distribution volume in children on chronic hemodialysis. Pediatr Nephrol 31, 991–999 (2016). https://doi.org/10.1007/s00467-015-3283-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3283-3

Keywords

Navigation