Skip to main content
Log in

A coupled BEM-FEM method for finite strain magneto-elastic boundary-value problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The first objective of this contribution is the formulation of nonlinear problems in magneto-elasticity involving finite geometry of the surrounding free space. More specifically for the magnetic part of the problem, the surrounding free space is described by means of a boundary integral equation for which boundary elements are used that are appropriately coupled with the finite element discretization used inside the material. The second objective is to develop a numerical strategy to solve the strongly coupled magneto-mechanics problem at hand. Herein we provide a staggered scheme consisting of a magnetostatic resolution employing the above coupled BEM-FEM procedure at fixed deformation, followed by a mechanical resolution at fixed magnetic fields. This decoupled method renders the whole solution strategy very appealing since, among others, the first BEM-FEM resolution is linear for some prototype models, and the remaining mechanical resolution is analogous to nowadays classical nonlinear elastostatic problems in the finite strain range. Some nonlinear boundary-value problems are simulated to demonstrate the applicability of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brebbia CA, Dominguez J (1998) Boundary elements. An introductory course, 2nd edn. WIT Press, Boston

    MATH  Google Scholar 

  2. Brebbia CA, Telles JCF, Wrobel LC (1984) Boundary element techniques. Theory and applications in engineering. Springer, Berlin

    Book  MATH  Google Scholar 

  3. Brigadnov IA, Dorfmann A (2003) Mathematical modeling of magneto-sensitive elastomers. Int J Solids Struct 40:4659–4674

    Article  MATH  Google Scholar 

  4. Brown WF (1966) Magnetoelastic interactions. Springer, Berlin

    Book  Google Scholar 

  5. Bustamante R, Dorfmann A, Ogden RW (2006) Universal relations in isotropic nonlinear magnetoelasticity. Q J Mech Appl Math 59:435–450

    Article  MathSciNet  MATH  Google Scholar 

  6. Bustamante R, Dorfmann A, Ogden RW (2008) On variational formulations in nonlinear magnetoelastostatics. Math Mech Solids 13:725–745

    Article  MathSciNet  MATH  Google Scholar 

  7. Bustamante R, Dorfmann A, Ogden RW (2011) Numerical solution of finite geometry boundary-value problems in nonlinear magnetoelasticity. Int J Solids Struct 48:874–883

    Article  MATH  Google Scholar 

  8. Dorfmann A, Ogden RW (2003) Magnetoelastic modelling of elastomers. Eur J Mech A Solids 22:497–507

    Article  MathSciNet  MATH  Google Scholar 

  9. Dorfmann A, Ogden RW (2004) Nonlinear magnetoelastic deformations. Q J Mech Appl Mech 57:599–622

    Article  MathSciNet  MATH  Google Scholar 

  10. Ericksen JL (2006) A modified theory of magnetic effects in elastic materials. Math Mech Solids 11:23–47

    Article  MathSciNet  MATH  Google Scholar 

  11. Ethiraj G, Miehe C (2016) Multiplicative magneto-elasticity of magnetosensitive polymers incorporating micromecanically-based network kernels. Int J Eng Sci 102:93–119

    Article  Google Scholar 

  12. Ginder JM, Clark SM, Schlotter WF, Nichols ME (2002) Magnetostrictive phenomena in magnetorheological elastomers. Int J Mod Phys B 16:2412–2418

    Article  Google Scholar 

  13. Holzapfel GA (2000) Nonlinear solid mechanics. A continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  14. Jackson JD (1999) Classical electrodynamics, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  15. Jolly MR, Carlson JD, Muñoz BC (1996) A model of the behavior of magnetorheological materials. Smart Mater Struct 5:607–614

    Article  Google Scholar 

  16. Nedjar B (2014) On finite strain poroplasticity with reversible and irreversible porosity laws. Formulation and computational aspects. Mech Mater 68:237–252

    Article  Google Scholar 

  17. Nedjar B (2015) A theory of finite strain magneto-poromechanics. J Mech Phys Solids 84:293–312

    Article  MathSciNet  Google Scholar 

  18. Nedjar B (2016) A finite strain modeling of electro-viscoelastic materials. Int J Solids Struct 97–98:312–321

    Article  Google Scholar 

  19. Nedjar B (2016) On constitutive models of finite elasticity with possible zero apparent Poisson’s ratio. Int J Solids Struct 91:72–77

    Article  Google Scholar 

  20. Ogden RW (2011) Magnetostatics: from basic principles to nonlinear interactions in deformable media. In: Ogden RW, Steigmann DJ (eds) Mechanics and elastodynamics of magneto- and electro-elastic materials, CISM Courses And Lectures; No 527. Springer, Wien, pp 107–152

  21. Pao YH (1978) Electromechanic forces in deformable continua. In: Nemat-Nasser S (ed) Mechanics today, vol 4. Oxford University Press, Oxford, pp 209–305

    Chapter  Google Scholar 

  22. Simo JC (1998) Numerical analysis and simulation of plasticity. In: Ciarlet PG, Lions JL (eds) Handbook of numerical analysis, vol VI. Elsevier Science BV, North-Holland, pp 183–499

  23. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  24. Spencer AJM(1984) Constitutive theory for strongly anisotropic solids. In: Spencer AJM (ed) Continuum theory of the mechanics of fibre-reinforced composites, CISM Cources and Lectures No. 282. Springer, Wien

  25. Steigmann DJ (2004) Equilibrium theory for magnetic elastomers and magnetoelastic membranes. Int J Non-linear Mech 39:1193–1216

    Article  MATH  Google Scholar 

  26. Steinmann P(2011) Computational nonlinear electro-elasticity -getting started. In: Ogden RW , Steigmann DJ (eds) Mechanics and elastodynamics of magneto- and electro-elastic materials, CISM Courses and Lectures No. 527. Springer, Wien, pp 181–230

  27. Varga Z, Filipcsei G, Zrínyi M (2006) Magnetic field sensitive functional elastomers with tunable elastic modulus. Polymer 47:227–233

    Article  Google Scholar 

  28. Vu DK, Steinmann P (2007) Nonlinear electro- and magneto-elastostatics: material and spatial settings. Int J Solids Struct 44:7891–7901

    Article  MATH  Google Scholar 

  29. Vu DK, Steinmann P (2010) A 2-d coupled BEM-FEM simulation of electro-elastostatics at large strain. Comput Methods Appl Mech Eng 199:1124–1133

  30. Vu DK, Steinmann P (2012) On 3-d coupled BEM-FEM simulation of nonlinear electro-elastostatics. Comput Methods Appl Mech Eng 201–204:82–90

    Article  MathSciNet  MATH  Google Scholar 

  31. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

    MATH  Google Scholar 

  32. Wrobel LC (2002) The boundary element method, volume 1, applications in thermo-fluids and acoustics. Wiley, Chichester

    MATH  Google Scholar 

  33. Zhao X, Kim J, Cezar CA, Huebsch N, Lee K, Bouhadir K, Mooney DJ (2011) Active scaffolds for on-demand drug and cell delivery. Proc Natl Acad Sci (PNAS) 108(1):67–72

    Article  Google Scholar 

  34. Zrínyi M, Barsi L, Büki A (1996) Deformation of ferrogels induced by nonuniform magnetic fields. J. Chem. Phys. 104(21):8750–8756

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Nedjar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedjar, B. A coupled BEM-FEM method for finite strain magneto-elastic boundary-value problems. Comput Mech 59, 795–807 (2017). https://doi.org/10.1007/s00466-016-1370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1370-3

Keywords

Navigation