Skip to main content
Log in

An extended molecular statics algorithm simulating the electromechanical continuum response of ferroelectric materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations of ferroelectric materials have improved tremendously over the last few decades. Specifically, the core-shell model has been commonly used for the simulation of ferroelectric materials such as barium titanate. However, due to the computational costs of MD, the calculation of ferroelectric hysteresis behaviour, and especially the stress-strain relation, has been a computationally intense task. In this work a molecular statics algorithm, similar to a finite element method for nonlinear trusses, has been implemented. From this, an algorithm to calculate the stress dependent continuum deformation of a discrete particle system, such as a ferroelectric crystal, has been devised. Molecular statics algorithms for the atomistic simulation of ferroelectric materials have been previously described. However, in contrast to the prior literature the algorithm proposed in this work is also capable of effectively computing the macroscopic ferroelectric butterfly hysteresis behaviour. Therefore the advocated algorithm is able to calculate the piezoelectric effect as well as the converse piezoelectric effect simultaneously on atomistic and continuum length scales. Barium titanate has been simulated using the core-shell model to validate the developed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Andia PC, Constanzo F, Gray GL (2006) A classical mechanics approach to the determination of the stress-strain response of particle systems. Model Simul Mater Sci Eng 14:741–757

    Article  Google Scholar 

  2. Axe J (1967) Apparent ionic charges and vibrational eigenmodes of batio\(3\) and other perovskites. Phys Rev 157(2):429

    Article  Google Scholar 

  3. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis, 1st edn. Cambridge University Press, New York

    MATH  Google Scholar 

  4. Chen L-Q (2008) Phase-field method of phase transition/domain structures in ferroelectric thin films: A review. J Am Chem Soc 91(6):1835–1844

    Google Scholar 

  5. Choudhury N, Walter EJ, Kolesnikov AI, Loong C-K (2008) Large phonon band gap in srtio\(_3\) and the vibrational signatures of ferroelectricity in atio\(_3\) perovskites: First-principles lattice dynamics and inelastic neutron scattering. Phys Rev B 77(134111):

  6. Davydov D, Pelteret J, Steinmann P (2014) Comparison of several staggered atomistic-to-continuum concurrent coupling strategies. Comput Methods Appl Mech Eng 277:260–280

    Article  MathSciNet  Google Scholar 

  7. Ericksen JL (2008) On the cauchy-born rule. Math Mech Solids 13(199):

  8. Fennel CJ, Gezelter D (2006) Is the ewald summation still necessary? pairwise alternatives to the accepted standard for long-range electrostatics. J Che Phys 124(234104):

  9. Geerlings P, Proft FD, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  Google Scholar 

  10. Hansen JS, Schroder TB, Dyre JC (2012) Simplistic coulomb forces in molecular dynamics: comparing the wolf and shifted-force approximations. J Phys Chem 116:5738–5743

    Article  Google Scholar 

  11. Huber J, Fleck N, Landis C, McMeeking R (1999) A constitutive model for ferroelectric polycrystals. J Mech Phys Solids 47(8):1663–1697

    Article  MATH  MathSciNet  Google Scholar 

  12. Kamlah M (2001) Ferroelectric and ferroelastic piezoceramics - modeling of electromechanical hysteresis phenomena. Contin Mech Thermodyn 13:219–268

    Article  MATH  Google Scholar 

  13. Khatib D, Migoni R, Kugel GE, Godfroy L (1989) Lattice dynamics of batio\(_3\) in the cubic phase. J Phys 1:9811–9822

    Google Scholar 

  14. Kontsos A, Landis CM (2009) Computational modeling of domain wall interactions with dislocations in ferroelectric crystals. International Journal of Solids and Structures 46(6):1491–1498

    Article  MATH  Google Scholar 

  15. Kwei GH, Lawson AC, Billinge SJL (1993) Structures of ferroelectric phase of barium titanate. J Phys Chem 97:2368–2377

    Article  Google Scholar 

  16. Landauer R (1957) Electrostatic considerations in batio\(_3\) domain formation during polarization reversal. J Appl Phys 28(2):227–234

    Article  Google Scholar 

  17. Landauer R, Young D, Drougard M (1956) Polarization reversal in the barium titanate hysteresis loop. J Appl Phys 27(7):752–758

    Article  Google Scholar 

  18. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 52(7182):

  19. Parrinello M, Rahman A (1982) Strain fluctuations and elastic constants. J Chem Phy 76(2662):

  20. Podio-Guidugli P (2010) On (andersen-) parrinello-rhaman molecular dynamics, the related metadynamics, and the use of the cauchy-born rule. J Elast 100:145–153

    Article  MATH  MathSciNet  Google Scholar 

  21. Resta R (2003) Ab initio simulation of the properties of ferroelectric materials. Model Simul Mater Sci Eng 11:R69–R96

    Article  Google Scholar 

  22. Resta R, Vanderbilt D (2007) Theory of polarization: a modern approach. In: Physics of Ferroelectrics. Springer, pp. 31–68

  23. Sang Y, Liu B, Fang D (2008) The size and strain effects on the electric-field-induced domain evolution and hysteresis loop in ferroelectric batio\(_3\) nanofilms. Comput Mater Sci 44:404–410

    Article  Google Scholar 

  24. Schrade D, Müller R, Gross D (2013) On the physical interpretation of material parameters in phase field models for ferroelectrics. Arch Appl Mech 83(10):1393–1413

    Article  MATH  Google Scholar 

  25. Schrade D, Müller R, Gross D, Keip M-A, Thai H, Schröder J (2014) An invariant formulation for phase field models in ferroelectrics. Int J Solids Struct 51(11):2144–2156

    Article  Google Scholar 

  26. Sepliarsky M, Asthagiri A, Phillpot SR, Stachiotti MG, Migoni RL (2005a) Atomic-level simulation of ferroelectricity in oxide materials. Curr Opin Solid State Mater Sci 9:107–113

    Article  Google Scholar 

  27. Sepliarsky M, Stachiotti MG, Phillpot SR (2005b) Interatomic potentials: Ferroelectrics. In: Handbook of Materials Modeling, 1st Edition. Springer Verlag, New York

  28. Steinmann P, Elizondo A, Sunyk R (2006) Studies of validity of the cauchy-born rule by direct comparison of continuum and atomistic modelling. Model Simul Mater Sci Eng 15:271–281

    Article  Google Scholar 

  29. Su Y, Landis CM (2007) Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning. J Mech and Phys Solids 55(2):280–305

    Article  MATH  MathSciNet  Google Scholar 

  30. Subramaniyan AK, Sun C (2008) Engineering molecular mechanics: an efficient static high temperature molecular simulation technique. Nanotechnology 19(28):285706

    Article  Google Scholar 

  31. Sunyk R (2004) On aspects of mixed continuum-atomistic material modelling. PhD Thesis

  32. Sunyk R, Steinmann P (2003) On higher gradients in continuum-atomistic modelling. Int J Solids Struct 40(24):6877–6896

    Article  MATH  Google Scholar 

  33. Tadmor EB, Miller RE (2011) Continuum, atomistic and multiscale techniques. In: Modeling Materials, 1st edn. Cambridge University Press, New York.

  34. Tinte S, Stachiotti M, Phillpot S, Sepliarsky M, Wolf D, Migoni R (2004) Ferroelectric properties of baxsr1- xtio3 solid solutions obtained by molecular dynamics simulation. J Phys 16(20):3495

    Google Scholar 

  35. Tinte S, Stachiotti MG, Sepliarsky M, Migoni RL, Rodriguez CO (1999) Atomistic modelling of batio\(_3\) based on first-principles calculations. J Phys 11:9679–9690

    Google Scholar 

  36. Wolf D, Keblinski P, Phillpot SR, Eggebrecht J (1999) Exact method for the simulation of coulombic systems by spherically truncted, pairwise r-1 summation. J Chem Phys 110:266–267

    Google Scholar 

  37. Wriggers P (2001) Nichtlineare finite-elemente-methode, 1st edn. Springer Verlag, New York

    Book  Google Scholar 

  38. Zhang Y, Hong J, Liu B, Fang D (2009) Molecular dynamics investigations on the size-dependent ferroelectric behavior of batio3 nanowires. Nanotechnology 20(405703):

  39. Zhang Y, Xu R, Liu B, Fang D (2012) An electromechanical atomistic-scale finite element method for simulating evolutions of ferroelectric nanodomains. J Mech Phys Solids 60:1383–1399

    Article  Google Scholar 

  40. Zhong W, King-Smith R, Vanderbilt D (1994) Giant lo-to splittings in perovskite ferroelectrics. Phys Rev lett 72(22):3618

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for the financial support of this project under the research group project FOR 1509 Ferroische Funktionsmaterialien.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Steinmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endres, F., Steinmann, P. An extended molecular statics algorithm simulating the electromechanical continuum response of ferroelectric materials. Comput Mech 54, 1515–1527 (2014). https://doi.org/10.1007/s00466-014-1072-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1072-7

Keywords

Navigation