Skip to main content

Advertisement

Log in

Numerical investigations on the osseointegration of uncemented endoprostheses based on bio-active interface theory

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In order to simulate the osseointegration of bone implants, a bio-active interface theory is necessary. The thin bone-implant interface layer is described by the Drucker–Prager plasticity model. The formulation of bone mineral density depends on the local mechanical environment. For the simulation of the osseointegration of bone implants a bio-active interface theory is suggested. A thin bone-implant interface layer is described by a Drucker–Prager plasticity model. An evolution rule for the bone mineral density is formulated in dependency of the local mechanical environment. The time dependent ingrowth is modeled by a hardening rule which modifies the Drucker-Prager yield-surface cone in the principle stress state in dependency of the local bone mineral density. The osseointegration process is limited by the violation of a so called micromotion threshold. This relative motion in the implant-bone interface is computed by dynamic loads of daily motion activity. For parameter studies on detailed 3D models model reduction techniques are introduced. The applicability is demonstrated on a hip-joint prosthesis which is in clinical usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdul-Kadir MR, Hansen U, Klabunde R, Lucas D, Amis A (2008) Finite element modelling of primary hip stem stability: the effect of interference fit. J Biomech 41(3): 587–594

    Article  Google Scholar 

  2. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10 Suppl 2: S96–S101

    Google Scholar 

  3. Andreykiv A, Prendergast PJ, van Keulen F, Swieszkowski W, Rozing PM (2005) Bone ingrowth simulation for a concept glenoid component design. J Biomech 38(5): 1023–1033

    Article  Google Scholar 

  4. Andreykiv A, van Keulen F, Prendergast PJ (2008) Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech Model Mechanobiol 7(6): 443–461

    Article  Google Scholar 

  5. Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L (2003) Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthop Res 21(6): 1011–1017

    Article  Google Scholar 

  6. Bergmann G (2008). http://www.OrthoLoad.com

  7. Büchler P, Pioletti DP, Rakotomanana LR (2003) Biphasic constitutive laws for biological interface evolution. Biomech Model Mechanobiol 1(4): 239–249

    Article  Google Scholar 

  8. Dammak M, Shirazi-Adl A, Schwartz M, Gustavson L (1997) Friction properties at the bone-metal interface: comparison of four different porous metal surfaces. J Biomed Mater Res 35(3): 329–336

    Article  Google Scholar 

  9. Davim JP, Marques N (2004) Dynamical experimental study of friction and wear behaviour of bovine cancellous bone sliding against a metallic counterface in a water lubricated environment. J Mater Process Technol 152(3): 389–394

    Article  Google Scholar 

  10. Fernandes PR, Folgado J, Jacobs C, Pellegrini V (2002) A contact model with ingrowth control for bone remodelling around cementless stems. J Biomech 35: 167–176

    Article  Google Scholar 

  11. Geris L, Sloten JV, Oosterwyck HV (2010) Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech Model Mechanobiol

  12. Keaveny TM, Bartel DL (1993) Effects of porous coating, with and without collar support, on early relative motion for a cementless hip prosthesis. J Biomech 26(12): 1355–1368

    Article  Google Scholar 

  13. Kienapfel H, Sprey C, Wilke A, Griss P (1999) Implant fixation by bone ingrowth. J Arthroplasty 14(3): 355–368

    Article  Google Scholar 

  14. Lebon F, Ronel-Idriss S (2004) Asymptotic analysis of mohr-coulomb and drucker-prager soft thin layers. Steel Compos Struct 4(2): 133–147

    Google Scholar 

  15. Lutz A, Nackenhorst U (2009) A computational approach on the osseointegration of bone implants based on a bio-active interface theory. GAMM-Mitteilungen 32(2): 178–192

    Article  MathSciNet  MATH  Google Scholar 

  16. Lutz A, Nackenhorst U (2009) Numerical investigations on the biomechanical compatibility of hip-joint endoprostheses. Arch Appl Mech 80: 503–512

    Article  Google Scholar 

  17. Michalowski R, Mroz Z (1978) Associated and non-associated sliding rules in contact friction problems. Arch Mech 30: 259–276

    MATH  Google Scholar 

  18. Moreo P, Pérez M, García-Aznar J, Doblaré M (2007) Modelling the mechanical behaviour of living bony interfaces. Comput Methods Appl Mech Eng 196(35–36): 3300–3314

    Article  MATH  Google Scholar 

  19. Nackenhorst U (2006) Computational methods for studies on the biomechanics of bones. Found Civil Environ Eng 7: 251–271

    Google Scholar 

  20. Nackenhorst U (2007) Biomechanics of Bones: Modeling and Computation of Bone Remodeling in Handbook of Biomineralization, Chapter 3, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 35–48

  21. Onisoru J, Iarovici A, Capitanu L (2007) Finite element prediction of femoral stem osseointegration. In: Proceedings of the SISOM and Homagial Session of the Commission of Acoustics, Bucharest, pp 489–495

  22. Papavasiliou G, Kamposiora P, Bayne SC, Felton DA (1997) 3d-fea of osseointegration percentages and patterns on implant-bone interfacial stresses. J Dent 25(6): 485–491

    Article  Google Scholar 

  23. Pilliar RM, Lee JM, Maniatopoulos C (1986) Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res (208):108–113

  24. Rungsiyakull C, Li Q, Sun G, Li W, Swain MV (2010) Surface morphology optimization for osseointegration of coated implants. Biomaterials 31(27): 7196–7204

    Article  Google Scholar 

  25. Søballe K, Hansen ES, B-Rasmussen H, Jørgensen PH, Bnger C (1992) Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J Orthop Res 10(2): 285–299

    Article  Google Scholar 

  26. Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH (1998) Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res 43(2): 192–203

    Article  Google Scholar 

  27. Viceconti M, Monti L, Muccini R, Bernakiewicz M, Toni A (2001) Even a thin layer of soft tissue may compromise the primary stability of cementless hip stems. Clin Biomech (Bristol, Avon) 16(9): 765–775

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Lutz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lutz, A., Nackenhorst, U. Numerical investigations on the osseointegration of uncemented endoprostheses based on bio-active interface theory. Comput Mech 50, 367–381 (2012). https://doi.org/10.1007/s00466-011-0635-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0635-0

Keywords

Navigation