Skip to main content
Log in

Quantitative Tverberg Theorems Over Lattices and Other Discrete Sets

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

This paper presents a new variation of Tverberg’s theorem. Given a discrete set S of \(\mathbb {R}^{d}\), we study the number of points of S needed to guarantee the existence of an m-partition of the points such that the intersection of the m convex hulls of the parts contains at least k points of S. The proofs of the main results require new quantitative versions of Helly’s and Carathéodory’s theorems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliev, I., Bassett, R., De Loera, J.A., Louveaux, Q.: A quantitative Doignon–Bell–Scarf theorem. Combinatorica (2016). doi:10.1007/s00493-015-3266-9

  2. Aliev, I., De Loera, J.A., Louveaux, Q.: Integer programs with prescribed number of solutions and a weighted version of Doignon–Bell–Scarf’s theorem. In: Proceedings of Integer Programming and Combinatorial Optimization, 17th International IPCO Conference, pp. 37–51. Mathematical Optimization Society, Bonn (2014)

  3. Alon, N., Kleitman, D.J.: Piercing convex sets and the Hadwiger–Debrunner \((p, q)\)-problem. Adv. Math. 96(1), 103–112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amenta, N., De Loera, J.A., Soberón, P.: Helly’s theorem: new variations and applications (2015). ArXiv preprint. http://arxiv.org/abs/1508.07606

  5. Averkov, G.: On maximal \(S\)-free sets and the Helly number for the family of \(S\)-convex sets. SIAM J. Discrete Math. 27(3), 1610–1624 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Averkov, G., González Merino, B., Henze, M., Paschke, I., Weltge, S.: Tight bounds on discrete quantitative Helly numbers (2016). ArXiv preprint. http://arxiv.org/abs/1602.07839

  7. Averkov, G., Weismantel, R.: Transversal numbers over subsets of linear spaces. Adv. Geom. 12(1), 19–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bárány, I.: A generalization of Carathéodory’s theorem. Discrete Math. 40(2–3), 141–152 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bárány, I., Larman, D.G.: A colored version of Tverberg’s theorem. J. Lond. Math. Soc. 2(2), 314–320 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bárány, I., Matoušek, J.: A fractional Helly theorem for convex lattice sets. Adv. Math. 174(2), 227–235 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bárány, I., Onn, S.: Colourful linear programming and its relatives. Math. Oper. Res. 22(3), 550–567 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bell, D.E.: A theorem concerning the integer lattice. Stud. Appl. Math. 56(2), 187–188 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carathéodory, C.: Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen. Math. Ann. 64(1), 95–115 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chestnut, S.R., Hildebrand, R., Zenklusen, R.: Sublinear bounds for a quantitative Doignon–Bell–Scarf theorem (2015). ArXiv preprint. http://arxiv.org/abs/1512.07126

  15. Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the dimension is small. J. Assoc. Comput. Mach. 42(2), 488–499 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Danzer, L., Grünbaum, B., Klee, V.: Helly’s theorem and its relatives. In: Proceedings of Symposia in Pure Mathematics, vol. VII, pp. 101–180. American Mathematical Society, Providence, RI (1963)

  17. De Loera, J.A., La Haye, R.N., Oliveros, D., Roldán-Pensado, E.: Beyond chance-constrained convex mixed-integer optimization: a generalized Calafiore–Campi algorithm and the notion of \(s\)-optimization (2015). http://arxiv.org/abs/1504.00076

  18. De Loera, J.A., La Haye, R.N., Oliveros, D., Roldán-Pensado, E.: Helly numbers of subsets of \({\mathbb{R}}^{d}\) and sampling techniques in optimization (2015). To appear in Adv. Geom. http://arxiv.org/abs/1504.00076

  19. De Loera, J.A., La Haye, R., Rolnick, D., Soberón, P.: Quantitative Tverberg, Helly, and Carathéodory theorems (2015). Preprint. http://arxiv.org/abs/1503.06116

  20. De Loera, J.A., La Haye, R., Rolnick, D., Soberón, P.: Quantitative combinatorial geometry for continuous parameters. Discrete Comput. Geom. (2016). doi:10.1007/s00454-016-9857-4

  21. Doignon, J.-P.: Convexity in cristallographical lattices. J. Geom. 3(1), 71–85 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eckhoff, J.: Helly, Radon, and Carathéodory type theorems. In: Gruber, P., Wills, J. (eds.) Handbook of Convex Geometry, vol. A, B, pp. 389–448. North-Holland, Amsterdam (1993)

    Chapter  Google Scholar 

  23. Eckhoff, J.: The partition conjecture. Discrete Math. 221(1–3), 61–78 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Frick, F.: Counterexamples to the topological Tverberg conjecture (2015). ArXiv preprint. http://arxiv.org/abs/1502.00947

  25. Hoffman, A.J.: Binding constraints and Helly numbers. Ann. N. Y. Acad. Sci. 319(1), 284–288 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jamison, R.: Partition numbers for trees and ordered sets. Pac. J. Math. 96(1), 115–140 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Katchalski, M., Liu, A.: A problem of geometry in \({\mathbb{R}}^n\). Proc. Am. Math. Soc. 75(2), 284–288 (1979)

    MATH  Google Scholar 

  28. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New York (2012)

    MATH  Google Scholar 

  29. Onn, S.: On the geometry and computational complexity of Radon partitions in the integer lattice. SIAM J. Discrete Math. 4(3), 436–446 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rabinowitz, S.: A theorem about collinear lattice points. Util. Math. 36, 93–95 (1989)

    MathSciNet  MATH  Google Scholar 

  31. Radon, J.: Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math. Ann. 83(1–2), 113–115 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rolnick, D., Soberón, P.: Quantitative \((p,q)\) theorems in combinatorial geometry (2015). Preprint. http://arxiv.org/abs/1504.01642

  33. Roudneff, J.P.: Partitions of points into simplices with \(k\)-dimensional intersection. I. The conic Tverberg’s theorem. Eur. J. Comb. 22(5), 733–743 (2001). Combinatorial geometries (Luminy, 1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sarkaria, K.S.: Tverberg’s theorem via number fields. Isr. J. Math. 79(2), 317–320 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Scarf, H.E.: An observation on the structure of production sets with indivisibilities. Proc. Natl. Acad. Sci. USA 74(9), 3637–3641 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tverberg, H.: A generalization of Radon’s theorem. J. Lond. Math. Soc. 41(1), 123–128 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tverberg, H.: A generalization of Radon’s theorem. II. Bull. Aust. Math. Soc. 24(3), 321–325 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wenger, R.: Helly-type theorems and geometric transversals. In: O’Rourke, J., Goodman, J.E. (eds.) Handbook of Discrete and Computational Geometry. CRC Press Series Discrete Mathematics Applied, pp. 63–82. CRC, Boca Raton (1997)

  39. Ziegler, G.M.: 3N colored points in a plane. Notices Am. Math. Soc. 58(4), 550–557 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to G. Averkov, I. Bárány, A. Barvinok, F. Frick, B. González Merino, A. Holmsen, J. Pach, S. Weltge, and G.M. Ziegler for their comments and suggestions. This work was partially supported by the Institute for Mathematics and its Applications (IMA) in Minneapolis, MN funded by the National Science Foundation (NSF). The authors are grateful for the wonderful working environment that led to this paper. The research of De Loera and La Haye was also supported first by a UC MEXUS grant and later by an NSA grant. De Loera was also supported by NSF Grant DMS-1522158. Rolnick was additionally supported by NSF Grants DMS-1321794 and 1122374.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Soberón.

Additional information

Editor in Charge: Günter M. Ziegler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Loera, J.A., La Haye, R.N., Rolnick, D. et al. Quantitative Tverberg Theorems Over Lattices and Other Discrete Sets. Discrete Comput Geom 58, 435–448 (2017). https://doi.org/10.1007/s00454-016-9858-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9858-3

Keywords

Mathematics Subject Classification

Navigation