Skip to main content
Log in

Unique Determination of Convex Lattice Sets

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let K and L be origin-symmetric convex lattice sets in \(\mathbb Z^n\). We study a discrete analogue of the Aleksandrov theorem for the surface areas of projections. If for every \(u\in \mathbb Z^n\), the sets \((K|u^\perp )\cap \partial (\hbox {conv}(K)|u^\perp )\) and \((L|u^\perp )\cap \partial (\hbox {conv}(L)|u^\perp )\) have the same number of points, is then necessarily \(K=L\)? We give a positive answer to this question in \(\mathbb Z^3\). In higher dimensions, we obtain an analogous result when \(\hbox {conv}(K)\) and \(\hbox {conv}(L)\) are zonotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barvinok, A.: Integer Points in Polyhedra. European Mathematical Society (EMS), Zürich (2008)

    Book  MATH  Google Scholar 

  2. Beck, M., Robins, S.: Computing the Continuous Discretely. Integer-Point Enumeration in Polyhedra. Undergraduate Texts in Mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  3. De Concini, C., Procesi, C.: Topics in Hyperplane Arrangements. Polytopes and Box-Splines, Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  4. Gardner, R.J.: Geometric Tomography, 2nd edn. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  5. Gardner, R.J., Gronchi, P., Zong, C.: Sums, projections, and sections of lattice sets, and the discrete covariogram. Discrete Comput. Geom. 34(3), 391–409 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gruber, P.M.: Convex and Discrete Geometry, Grundlehren der mathematischen Wissenschaften, vol. 336. Springer, Berlin (2007)

    Google Scholar 

  7. Schneider, R.: Convex Bodies: the Brunn–Minkowski Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  8. Sobolev, S.: Cubature Formulas and Modern Analysis. Gordon and Breach Science, Montreux (1992)

    MATH  Google Scholar 

  9. Xiong, H.: On a discrete version of Alexandrov’s projection theorem. Acta Math. Sin. (Engl. Ser.) 29(8), 1597–1606 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, N.: An analogue of the Aleksandrov projection theorem for convex lattice polygons. Proc. Am. Math. Soc. (in press)

  11. Zhou, J.: On the projections of convex lattice sets. Acta Math. Sin. (Engl. Ser.) 26(10), 1969–1980 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The second and third authors are partially supported by a grant from NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladyslav Yaskin.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryabogin, D., Yaskin, V. & Zhang, N. Unique Determination of Convex Lattice Sets. Discrete Comput Geom 57, 582–589 (2017). https://doi.org/10.1007/s00454-016-9823-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9823-1

Keywords

Mathematics Subject Classification

Navigation