Skip to main content
Log in

Intrinsic Volumes of Random Cubical Complexes

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Intrinsic volumes, which generalize both Euler characteristic and Lebesgue volume, are important properties of d-dimensional sets. A random cubical complex is a union of unit cubes, each with vertices on a regular cubic lattice, constructed according to some probability model. We analyze and give exact polynomial formulae, dependent on a probability, for the expected value and variance of the intrinsic volumes of several models of random cubical complexes. We then prove a central limit theorem for these intrinsic volumes. For our primary model, we also prove an interleaving theorem for the zeros of the expected-value polynomials. The intrinsic volumes of cubical complexes are useful for understanding the shape of random d-dimensional sets and for characterizing noise in applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Intrinsic volumes known by various names, including Hadwiger measures, Minkowski functionals, and quermassintegrale. These concepts are equivalent up to normalization.

  2. Valuations are not measures, though the concepts are similar. In particular, the intrinsic volumes may take on negative values and are not monotonic.

  3. The combinatorial Euler characteristic is not a homotopy invariant, but on compact sets it agrees with the topological Euler characteristic (which has value 1 on any contractible set).

References

  1. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer, New York (2007)

    MATH  Google Scholar 

  2. Aizenman, M., Chayes, J.T., Chayes, L., Frhlich, J., Russo, L.: On a sharp transition from area law to a perimeter law in a system of random surfaces. Commun. Math. Phys. 92, 19–69 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baryshnikov, Y., Ghrist, R., Wright, M.: Hadwiger’s theorem for definable functions. Adv. Math. 245, 573–586 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cohen, D., Costa, A., Farber, M., Kappeler, T.: Topology of random 2-complexes. Discrete Comput. Geom. 47(1), 117–149 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Curry, J., Ghrist, R., Robinson, M.: Euler calculus and its applications to signals and sensing. In: Proceedings of Symposia in Applied Mathematics. AMS, Boston (2012)

  6. Gray, S.B.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 20(5), 551–561 (1971)

    Article  MATH  Google Scholar 

  7. Grimmett, G.R., Holroyd, A.E.: Plaquettes, spheres, and entanglement. Electron. J. Probab. 15, 1415–1428 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Guderlei, R., Klenk, S., Mayer, J., Schmidt, V., Spodarev, E.: Algorithms for the computation of the Minkowski functionals of deterministic and random polyconvex sets. Image Vis. Comput. 25(4), 464–474 (2007)

    Article  Google Scholar 

  9. Kahle, M.: Random geometric complexes. Discrete Comput. Geom. 45(3), 553–573 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kahle, M.: Topology of Random Simplicial Complexes: A Survey. AMS Contemporary Volumes in Mathematics. AMS, Boston (2014)

    Google Scholar 

  11. Kahle, M., Meckes, E.: Limit theorems for Betti numbers of random simplicial complexes. Homol. Homot. Appl. 15(1), 343–374 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Klain, D.A., Rota, G.-C.: Introduction to Geometric Probability. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  13. Li, X., Mendonça, P.R.S, Bhotika, R.: Texture analysis using Minkowski functionals. In: Proceedings of SPIE Medical Imaging 2012: Image Processing, vol. 8314 (2012)

  14. Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26, 475–487 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Meshulam, R., Wallach, N.: Homological connectivity of random \(k\)-dimensional complexes. Random Struct. Algorithms 34(3), 408–417 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Richardson, E., Werman, M.: Efficient classification using the Euler characteristic. Pattern Recognit. Lett. 49, 99–106 (2014)

    Article  Google Scholar 

  17. Ross, N.: Fundamentals of Stein’s method. Probab. Surv. 8, 210–293 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schladitz, K., Ohser, J., Nagel, W.: Measurement of intrinsic volumes of sets observed on lattices. In: 13th International Conference on Discrete Geometry for Computer Imagery, pp. 247–258 (2006)

  19. Schanuel, S.H.: What is the Length of a Potato? Lecture Notes in Mathematics. Springer, Berlin (1986)

    MATH  Google Scholar 

  20. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2009)

    MATH  Google Scholar 

  21. Svane, A.M.: Estimation of intrinsic volumes from digital grey-scale images. J. Math. Imaging Vis. 49(2), 352–376 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  22. van den Dries, L.: Tame Topology and O-Minimal Structures. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  23. Wright, M.L.: Hadwiger integration of random fields. Topol. Methods Nonlinear Anal. 45(1), 117–128 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Institute for Mathematics and its Applications (IMA). This work was initiated at the IMA during the workshop on Topological Data Analysis in September 2013, and the second author was a postdoctoral fellow during the IMA’s annual program on Scientific and Engineering Applications of Algebraic Topology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew L. Wright.

Additional information

Editor in Charge: Herbert Edelsbrunner

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werman, M., Wright, M.L. Intrinsic Volumes of Random Cubical Complexes. Discrete Comput Geom 56, 93–113 (2016). https://doi.org/10.1007/s00454-016-9789-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-016-9789-z

Keywords

Mathematics Subject Classification

Navigation