Skip to main content
Log in

Many 2-Level Polytopes from Matroids

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

The family of 2-level matroids, that is, matroids whose base polytope is 2-level, has been recently studied and characterized by means of combinatorial properties. 2-Level matroids generalize series-parallel graphs, which have been already successfully analyzed from the enumerative perspective. We bring to light some structural properties of 2-level matroids and exploit them for enumerative purposes. Moreover, the counting results are used to show that the number of combinatorially non-equivalent \((n-1)\)-dimensional 2-level polytopes is bounded from below by \(c \cdot n^{-5/2} \cdot \rho ^{-n}\), where \(c\approx 0.03791727 \) and \(\rho ^{-1} \approx 4.88052854\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bergeron, F., Labelle, G., Leroux, P., Readdy, M.: Combinatorial Species and Tree-like Structures. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  2. Bodirsky, M., Giménez, O., Kang, M., Noy, M.: Enumeration and limit laws for series-parallel graphs. Eur. J. Comb. 28(8), 2091–2105 (2007)

    Article  MATH  Google Scholar 

  3. Borovik, A.V., Gel’fand, I.M., White, N.: Coxeter Matroids. Progress in Mathematics, vol. 216. Birkhäuser Boston, Boston (2003)

    Book  MATH  Google Scholar 

  4. Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Can. J. Math. 32(3), 734–765 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Loera, J.A., Rambau, J., Santos, F.: Triangulations. Algorithms and Computation in Mathematics, vol. 25. Springer, Berlin (2010)

    MATH  Google Scholar 

  6. Drmota, M.: Systems of functional equations. Random Struct. Algorithms 10(1–2), 103–124 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Drmota, M.: Random Trees. Springer, Wien, NewYork, Vienna (2009)

    Book  MATH  Google Scholar 

  8. Drmota, M., Fusy, É., Kang, M., Kraus, V., Rué, J.: Asymptotic study of subcritical graph classes. SIAM J. Discrete Math. 25(4), 1615–1651 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flajolet, P., Odlyzko, A.: Singularity analysis of generating functions. SIAM J. Discrete Math. 3(2), 216–240 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  11. Freij, R., Henze, M., Schmitt, M.W., Ziegler, G.M.: Face numbers of centrally symmetric polytopes produced from split graphs. Electron. J. Combin. 20(2):Paper 32, 15, (2013)

  12. Gelfand, I.M., Goresky, M., MacPherson, R.D., Serganova, V.V.: Combinatorial geometries, convex polyhedra, and Schubert cells. Adv. Math. 63(3), 301–316 (1987)

    Article  MathSciNet  Google Scholar 

  13. Gouveia, J., Parrilo, P.A., Thomas, R.R.: Theta bodies for polynomial ideals. SIAM J. Optim. 20(4), 2097–2118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grande, F., Sanyal, R.: Theta rank, levelness, and matroids minors. arXiv:1408.1262v2 (2015)

  15. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2, 2nd edn. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  16. Hanner, O.: Intersections of translates of convex bodies. Math. Scand. 4, 65–87 (1956)

    MathSciNet  MATH  Google Scholar 

  17. Hansen, A.B.: On a certain class of polytopes associated with independence systems. Math. Scand. 41(2), 225–241 (1977)

    MathSciNet  Google Scholar 

  18. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Emerging Applications of Algebraic Geometry. IMA Volumes in Mathematics and Its Applications, vol. 149, pp. 157–270. Springer, New York (2009)

  19. McMullen, P.: Constructions for projectively unique polytopes. Discrete Math. 14(4), 347–358 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oxley, J.: Matroid Theory. Oxford Graduate Texts in Mathematics, vol. 21, 2nd edn. Oxford University Press, Oxford (2011)

    Book  MATH  Google Scholar 

  21. Sanyal, R., Werner, A., Ziegler, G.M.: On Kalai’s conjectures concerning centrally symmetric polytopes. Discrete Comput. Geom. 41(2), 183–198 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Stanley, R.P.: Two poset polytopes. Discrete Comput. Geom. 1(1), 9–23 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sullivant, S.: Compressed polytopes and statistical disclosure limitation. Tohoku Math. J. 58(3), 433–445 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tutte, W.T.: Graph Theory. Encyclopedia of Mathematics and Its Applications, vol. 21. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  25. White, N. (ed.): Theory of Matroids. Encyclopedia of Mathematics and Its Applications, vol. 26. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  26. Ziegler, G.M.: Lectures on \(0/1\)-polytopes. In: Polytopes—Combinatorics and Computation (Oberwolfach, 1997). DMV Sem., vol. 29, pp. 1–41. Birkhäuser, Basel (2000)

  27. Ziegler, G.M.: Convex polytopes: example and conjectures. Doc course combinatorics and geometry 2009. Discrete Comput. Geom. CRM Documents 5.1(3):9–49 (2010)

Download references

Acknowledgments

F. G. was supported by the DFG within the research training group Methods for Discrete Structures (GRK1408). J. R. was partially supported by the Spanish MICINN Grant MTM2011-22851, the FP7-PEOPLE-2013-CIG project CountGraph (Ref. 630749), the DFG within the research training group Methods for Discrete Structures (GRK1408), and the Berlin Mathematical School. The authors thank Raman Sanyal for inspiring discussions and for accurate reading of this paper. Francisco Santos and Günter Ziegler are also thanked for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Grande.

Additional information

Editor in Charge: János Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grande, F., Rué, J. Many 2-Level Polytopes from Matroids. Discrete Comput Geom 54, 954–979 (2015). https://doi.org/10.1007/s00454-015-9735-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9735-5

Keywords

Navigation