Skip to main content
Log in

Stabbing Circles for Sets of Segments in the Plane

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Stabbing a set S of n segments in the plane by a line is a well-known problem. In this paper we consider the variation where the stabbing object is a circle instead of a line. We show that the problem is tightly connected to two cluster Voronoi diagrams, in particular, the Hausdorff and the farthest-color Voronoi diagram. Based on these diagrams, we provide a method to compute a representation of all the combinatorially different stabbing circles for S, and the stabbing circles with maximum and minimum radius. We give conditions under which our method is fast. These conditions are satisfied if the segments in S are parallel, resulting in a \(O(n \log ^2{n})\) time and O(n) space algorithm. We also observe that the stabbing circle problem for S can be solved in worst-case optimal \(O(n^2)\) time and space by reducing the problem to computing the stabbing planes for a set of segments in 3D. Finally we show that the problem of computing the stabbing circle of minimum radius for a set of n parallel segments of equal length has an \(\varOmega (n \log n)\) lower bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. Any vertex of \({\textsf {HVD}}(S)\) has degree three by the general position assumption that no four endpoints of segments in S are cocircular.

  2. Note that it is not always possible to shrink uv infinitesimally so that \(type(u)\) and \(type(v)\) consist of one element each. In particular, this is not possible when uv lies on an edge of \({\textsf {FCVD}}(S)\), and this situation does not contradict our general position assumption.

References

  1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: The farthest color Voronoi diagram and related problems. In: 17th European Workshop on Computational Geometry (EuroCG’01), pp. 113–116 (2001), Technical report 002 2006, Univ. Bonn

  2. Arkin, E.M., Dieckmann, C., Knauer, C., Mitchell, J.S., Polishchuk, V., Schlipf, L., Yang, S.: Convex transversals. Comput. Geom. 47(2), 224–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arkin, E.M., Díaz-Báñez, J.M., Hurtado, F., Kumar, P., Mitchell, J.S.B., Palop, B., Pérez-Lantero, P., Saumell, M., Silveira, R.I.: Bichromatic 2-center of pairs of points. Comput. Geom. 48(2), 94–107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aurenhammer, F., Drysdale, R., Krasser, H.: Farthest line segment Voronoi diagrams. Inf. Process. Lett. 100, 220–225 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific, Singapore (2013)

    Book  MATH  Google Scholar 

  6. Avis, D., Robert, J., Wenger, R.: Lower bounds for line stabbing. Inf. Process. Lett. 33(2), 59–62 (1989)

    Article  MathSciNet  Google Scholar 

  7. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L.J., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12(1), 54–68 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheilaris, P., Khramtcova, E., Langerman, S., Papadopoulou, E.: A randomized incremental algorithm for the Hausdorff Voronoi diagram of non-crossing clusters. Algorithmica 76(4), 935–960 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na, H.: Farthest-polygon Voronoi diagrams. Comput. Geom. 44(4), 234–247 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Claverol, M.: Problemas geométricos en morfología computacional. Ph.D. thesis, Universitat Politècnica de Catalunya (2004)

  11. Claverol, M., Garijo, D., Grima, C.I., Márquez, A., Seara, C.: Stabbers of line segments in the plane. Comput. Geom. 44(5), 303–318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Claverol, M., Garijo, D., Korman, M., Seara, C., Silveira, R.I.: Stabbing segments with rectilinear objects. In: Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS, vol. 9210, pp. 53–64. Springer (2015)

  13. Claverol, M., Khramtcova, E., Papadopoulou, E., Saumell, M., Seara, C.: Stabbing circles for some sets of Delaunay segments. In: 32th European Workshop on Computational Geometry (EuroCG’16), pp. 139–143 (2016)

  14. Díaz-Báñez, J.M., Korman, M., Pérez-Lantero, P., Pilz, A., Seara, C., Silveira, R.I.: New results on stabbing segments with a polygon. Comput. Geom. 48(1), 14–29 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Edelsbrunner, H., Maurer, H., Preparata, F., Rosenberg, A., Welzl, E., Wood, D.: Stabbing line segments. BIT 22(3), 274–281 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear functions: algorithms and applications. Discrete Comput. Geom. 4, 311–336 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J. Comput. 15(2), 317–340 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Discrete Comput. Geom. 1(1), 25–44 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces and its applications. Discrete Comput. Geom. 9(1), 267–291 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Klein, R.: Concrete and abstract Voronoi diagrams. Lecture Notes in Computer Science, vol. 400. Springer (1989)

  22. Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects: a divide and conquer approach. Int. J. Comput. Geom. Appl. 14(6), 421–452 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica 40(2), 63–82 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Papadopoulou, E., Dey, S.K.: On the farthest line-segment Voronoi diagram. Int. J. Comput. Geom. Appl. 23(06), 443–459 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rappaport, D.: Minimum polygon transversals of line segments. Int. J. Comput. Geom. Appl. 5(3), 243–256 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M. C. and C. S. were supported by Projects MTM2015-63791-R (MINECO/FEDER) and Gen.Cat. DGR2014SGR46. E. K. and E. P. were supported by Projects SNF 20GG21-134355, under the ESF EUROCORES Program EuroGIGA/VORONOI, and SNF 200021E-154387. M. S. was supported by Project LO1506 of the Czech Ministry of Education, Youth and Sports, and by Project NEXLIZ CZ.1.07/2.3.00/30.0038, co-financed by the European Social Fund and the state budget of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Evanthia Papadopoulou or Maria Saumell.

Additional information

A preliminary version of this paper appeared in Proc. 12th Latin American Theoretical Informatics Symposium (LATIN’16), pp. 290–305.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claverol, M., Khramtcova, E., Papadopoulou, E. et al. Stabbing Circles for Sets of Segments in the Plane. Algorithmica 80, 849–884 (2018). https://doi.org/10.1007/s00453-017-0299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-017-0299-z

Keywords

Navigation