Skip to main content
Log in

Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Lipases are versatile catalysts with many applications and can be produced by solid-state fermentation (SSF) using agro-industrial wastes. The aim of this work was to maximize the production of Aspergillus ibericus lipase under SSF of olive pomace (OP) and wheat bran (WB), evaluating the effect on lipase production of C/N ratio, lipids, phenols, content of sugars of substrates and nitrogen source addition. Moreover, the implementation of the SSF process in a packed-bed bioreactor and the improvement of lipase extraction conditions were assessed. Low C/N ratios and high content of lipids led to maximum lipase production. Optimum SSF conditions were achieved with a C/N mass ratio of 25.2 and 10.2% (w/w) lipids in substrate, by the mixture of OP:WB (1:1) and supplemented with 1.33% (w/w) (NH4)2SO4. Studies in a packed-bed bioreactor showed that the lower aeration rates tested prevented substrate dehydration, improving lipase production. In this work, the important role of Triton X-100 on lipase extraction from the fermented solid substrate has been shown. A final lipase activity of 223 ± 5 U g−1 (dry basis) was obtained after 7 days of fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Salihu A, Alam MZ, AbdulKarim MI, Salleh HM (2012) Lipase production: an insight in the utilization of renewable agricultural residues. Resour Conserv Recycl 58:36–44. doi:10.1016/j.resconrec.2011.10.007

    Article  Google Scholar 

  2. Kumar V, Singh D, Sangwan P, Kaur GP (2014) Global market scenario of industrial enzymes. In: Beniwal V, Sharma AK (eds) Industrial enzymes: trends, scope and relevance. Nova Science Publishers Inc, New York, pp 173–196

    Google Scholar 

  3. MarketsandMarkets (2017) http://www.marketsandmarkets.com/PressReleases/lipase.asp. Accessed 27 Mar 2017

  4. Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251. doi:10.1016/j.enzmictec.2005.10.016

    Article  CAS  Google Scholar 

  5. Viniegra-González G, Favela-Torres E, Aguilar CN et al (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13:157–167. doi:10.1016/S1369-703X(02)00128-6

    Article  Google Scholar 

  6. Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35:1153–1169. doi:10.1016/S0032-9592(00)00152-7

    Article  CAS  Google Scholar 

  7. Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84. doi:10.1016/S1369-703X(02)00121-3

    Article  CAS  Google Scholar 

  8. Singhania RR, Patel AK, Soccol CR, Pandey A (2009) Recent advances in solid-state fermentation. Biochem Eng J 44:13–18. doi:10.1016/j.bej.2008.10.019

    Article  CAS  Google Scholar 

  9. Molla AH, Fakhru’l-Razi A, Hanafi MM, Alam MZ (2004) Optimization of process factors for solid-state bioconversion of domestic wastewater sludge. Int Biodeterior Biodegrad 53:49–55. doi:10.1016/j.ibiod.2003.09.003

    Article  CAS  Google Scholar 

  10. Batra P, Khajuria R (2014) Supplementation of nitrogen source in wheat straw for improving cellulolytic potential of Ganoderma lucidium. Int J Pharma Bio Sci 5:90–99

    CAS  Google Scholar 

  11. Venkatesagowda B, Ponugupaty E, Barbosa AM, Dekker RFH (2015) Solid-state fermentation of coconut kernel-cake as substrate for the production of lipases by the coconut kernel-associated fungus Lasiodiplodia theobromae VBE-1. Ann Microbiol 65:129–142. doi:10.1007/s13213-014-0844-9

    Article  CAS  Google Scholar 

  12. Salgado JM, Abrunhosa L, Venâncio A et al (2014) Integrated use of residues from olive mill and winery for lipase production by solid state fermentation with Aspergillus sp. Appl Biochem Biotechnol 172:1832–1845. doi:10.1007/s12010-013-0613-4

    Article  CAS  Google Scholar 

  13. Lemos JLS, Fontes MCDA, Pereira N (2001) Xylanase production by Aspergillus awamori in solid-state fermentation and influence of different nitrogen sources. Appl Biochem Biotechnol 91–93:681–689

    Article  Google Scholar 

  14. Arvanitoyannis IS, Kassaveti A (2007) Current and potential uses of composted olive oil waste. Int J Food Sci Technol 42:281–295. doi:10.1111/j.1365-2621.2006.01211.x

    Article  CAS  Google Scholar 

  15. FAO (2016) Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#home. Accessed 1 Mar 2017

  16. Roig A, Cayuela ML, Sánchez-Monedero MA (2006) An overview on olive mill wastes and their valorisation methods. Waste Manag 26:960–969. doi:10.1016/j.wasman.2005.07.024

    Article  CAS  Google Scholar 

  17. Aliakbarian B, Casazza AA, Perego P (2011) Valorization of olive oil solid waste using high pressure–high temperature reactor. Food Chem 128:704–710. doi:10.1016/j.foodchem.2011.03.092

    Article  CAS  Google Scholar 

  18. INE (2016) Instituto Nacional de Estatística. https://www.ine.pt/xportal/xmain?xpgid=ine_main&xpid=INE. Accessed 1 Mar 2017

  19. Alburquerque JA, Gonzálvez J, García D, Cegarra J (2006) Effects of bulking agent on the composting of “alperujo”, the solid by-product of the two-phase centrifugation method for olive oil extraction. Process Biochem 41:127–132. doi:10.1016/j.procbio.2005.06.006

    Article  CAS  Google Scholar 

  20. Alburquerque JA, Gonzálvez J, García D, Cegarra J (2006) Measuring detoxification and maturity in compost made from “alperujo”, the solid by-product of extracting olive oil by the two-phase centrifugation system. Chemosphere 64:470–477. doi:10.1016/j.chemosphere.2005.10.055

    Article  CAS  Google Scholar 

  21. Gavala HN, Skiadas IV, Ahring BK, Lyberatos G (2005) Potential for biohydrogen and methane production from olive pulp. Water Sci Technol 52:209–215

    CAS  Google Scholar 

  22. Ballesteros I, Oliva JM, Saez F, Ballesteros M (2001) Ethanol production from lignocellulosic byproducts of olive oil extraction. Appl Biochem Biotechnol 91–93:237–252. doi:10.1385/ABAB:91-93:1-9:237

    Article  Google Scholar 

  23. Ramos-Cormenzana A, Monteoliva-Sánchez M, López MJ (1995) Bioremediation of alpechin. Int Biodeterior. Biodegradation 35:249–268. doi:10.1016/0964-8305(95)00033-2

    CAS  Google Scholar 

  24. Salgado JM, Abrunhosa L, Venâncio A et al (2014) Screening of winery and olive mill wastes for lignocellulolytic enzyme production from Aspergillus species by solid-state fermentation. Biomass Convers Biorefin 4:201–209. doi:10.1007/s13399-013-0100-8

    Article  CAS  Google Scholar 

  25. Oliveira F, Moreira C, Salgado JM et al (2016) Olive pomace valorization by Aspergillus species: lipase production using solid-state fermentation. J Sci Food Agric 96:3583–3589. doi:10.1002/jsfa.7544

    Article  CAS  Google Scholar 

  26. Alburquerque JA, González J, García D, Cegarra J (2004) Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour Technol 91:195–200. doi:10.1016/S0960-8524(03)00177-9

    Article  CAS  Google Scholar 

  27. Leite P, Salgado JM, Venâncio A et al (2016) Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresour Technol 214:737–746. doi:10.1016/j.biortech.2016.05.028

    Article  CAS  Google Scholar 

  28. Apprich S, Tirpanalan Ö, Johannes H et al (2014) Wheat bran-based biorefinery 2: valorization of products. LWT Food Sci Technol 56:222–231. doi:10.1016/j.lwt.2013.12.003

    Article  CAS  Google Scholar 

  29. Mala JGS, Edwinoliver NG, Kamini NR, Puvanakrishnan R (2007) Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594. J Gen Appl Microbiol 53:247–253. doi:10.2323/jgam.53.247

    Article  CAS  Google Scholar 

  30. Edwinoliver NG, Thirunavukarasu K, Naidu RB et al (2010) Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis. Bioresour Technol 101:6791–6796. doi:10.1016/j.biortech.2010.03.091

    Article  CAS  Google Scholar 

  31. Benjamin S, Pandey A (1998) Mixed-solid substrate fermentation. A novel process for enhanced lipase production by Candida rugosa. Acta Biotechnol 4:315–324

    Article  Google Scholar 

  32. Ganguly S, Nandi S (2015) Process optimization of lipase catalyzed synthesis of diesters in a packed bed reactor. Biochem Eng J 102:2–5. doi:10.1016/j.bej.2015.03.020

    Article  CAS  Google Scholar 

  33. Alkan H, Baysal Z, Uyar F, Doǧru M (2007) Production of lipase by a newly isolated Bacillus coagulans under solid-state fermentation using melon wastes. Appl Biochem Biotechnol 136:183–192. doi:10.1007/BF02686016

    Article  CAS  Google Scholar 

  34. Lopes VRO, Farias MA, Belo IMP, Coelho MAZ (2016) Nitrogen sources on TPOMW valorization through solid state fermentation performed by Yarrowia lipolytica. Braz J Chem Eng 33:261–270. doi:10.1590/0104-6632.20160332s20150146

    Article  Google Scholar 

  35. Lima VMG, Krieger N, Sarquis MIM et al (2003) Effect of nitrogen and carbon sources on lipase production by Penicillium aurantiogriseum. Food Technol Biotechnol 41:105–110

    CAS  Google Scholar 

  36. Kamini NR, Mala JGS, Puvanakrishnan R (1998) Lipase production from Aspergillus niger by solid-state fermentation using gingelly oil cake. Process Biochem 33:505–511. doi:10.1016/S0032-9592(98)00005-3

    Article  CAS  Google Scholar 

  37. Jia J, Yang X, Wu Z et al (2015) Optimization of fermentation medium for extracellular lipase production from Aspergillus niger using response surface methodology. Biomed Res Int 2015:1–8. doi:10.1155/2015/497462

    Google Scholar 

  38. Rigo E, Ninow JL, Polloni AE et al (2009) Improved lipase biosynthesis by a newly isolated Penicillium sp. grown on agricultural wastes. Ind Biotechnol 5:119–126. doi:10.1089/ind.2009.5.119

    Article  CAS  Google Scholar 

  39. Gombert AK, Pinto AL, Castilho LR, Freire DMG (1999) Lipase production by Penicillium restrictum in solid-state fermentation using babassu oil cake as substrate. Process Biochem 35:85–90. doi:10.1016/S0032-9592(99)00036-9

    Article  CAS  Google Scholar 

  40. Palma MB, Annette LP, Gombert AK et al (2000) Lipase production by Penicillium restrictum using solid waste of industrial babassu oil production as substrate. Appl Biochem Biotechnol 84–86:1137–1145. doi:10.1385/ABAB:84-86:1-9:1137

    Article  Google Scholar 

  41. Falony G, Armas JC, Mendoza JCD, Hernández JLM (2006) Production of extracellular lipase from Aspergillus niger by solid-state fermentation. Food Technol Biotechnol 44:235–240

    CAS  Google Scholar 

  42. Amin M, Bhatti HN (2014) Effect of physicochemical parameters on lipase production by Penicillium fellutanum using canola seed oil cake as substrate. Int J Agric Biol 16:118–124

    CAS  Google Scholar 

  43. Damaso MCT, Passianoto MA, de Freitas SC et al (2008) Utilization of agroindustrial residues for lipase production by solid-state fermentation. Braz J Microbiol 39:676–681. doi:10.1590/S1517-83822008000400015

    Article  Google Scholar 

  44. Gutarra MLE, Godoy MG, Maugeri F et al (2009) Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresour Technol 100:5249–5254. doi:10.1016/j.biortech.2008.08.050

    Article  CAS  Google Scholar 

  45. Mahadik ND, Puntambekar US, Bastawde KB et al (2002) Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem 38:715–721. doi:10.1016/S0032-9592(02)00194-2

    Article  CAS  Google Scholar 

  46. Díaz AB, Alvarado O, de Ory I et al (2013) Valorization of grape pomace and orange peels: improved production of hydrolytic enzymes for the clarification of orange juice. Food Bioprod Process 91:580–586. doi:10.1016/j.fbp.2013.01.007

    Article  Google Scholar 

  47. Pérez-Rodríguez N, Oliveira F, Pérez-Bibbins B et al (2014) Optimization of xylanase production by filamentous fungi in solid-state fermentation and scale-up to horizontal tube bioreactor. Appl Biochem Biotechnol 173:803–825. doi:10.1007/s12010-014-0895-1

    Article  Google Scholar 

  48. Salgado JM, Abrunhosa L, Venâncio A et al (2015) Enhancing the bioconversion of winery and olive mill waste mixtures into lignocellulolytic enzymes and animal feed by Aspergillus uvarum using a packed-bed bioreactor. J Agric Food Chem 63:9306–9314. doi:10.1021/acs.jafc.5b02131

    Article  CAS  Google Scholar 

  49. Lu M, Brooks JD, Maddox IS (1997) Citric acid production by solid-state fermentation in a packed-bed reactor using Aspergillus niger. Enzyme Microb Technol 21:392–397. doi:10.1016/S0141-0229(97)00048-3

    Article  CAS  Google Scholar 

  50. Balaji V, Ebenezer P (2008) Optimization of extracellular lipase production in Colletotrichum gloeosporioides by solid state fermentation. Indian J Sci Technol 1:1–8

    Google Scholar 

  51. Rodriguez JA, Mateos JC, Nungaray J et al (2006) Improving lipase production by nutrient source modification using Rhizopus homothallicus cultured in solid state fermentation. Process Biochem 41:2264–2269. doi:10.1016/j.procbio.2006.05.017

    Article  CAS  Google Scholar 

  52. Pal A, Khanum F (2010) Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Bioresour Technol 101:7563–7569. doi:10.1016/j.biortech.2010.04.033

    Article  CAS  Google Scholar 

  53. Díaz AB, Caro I, de Ory I, Blandino A (2007) Evaluation of the conditions for the extraction of hydrolitic enzymes obtained by solid state fermentation from grape pomace. Enzyme Microb Technol 41:302–306. doi:10.1016/j.enzmictec.2007.02.006

    Article  Google Scholar 

Download references

Acknowledgements

Felisbela Oliveira acknowledges the financial support from Fundação para a Ciência e Tecnologia (FCT) of Portugal through grant SFRH/BD/87953/2012. José Manuel Salgado was supported by grant CEB/N2020–INV/01/2016 from Project “BIOTECNORTE-Underpinning Biotechnology to foster the north of Portugal bioeconomy” (NORTE-01-0145-FEDER-000004). Luís Abrunhosa was supported by grant UMINHO/BPD/51/2015 from project UID/BIO/04469/2013 financed by FCT/MEC (OE). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020–Programa Operacional Regional do Norte. Noelia Pérez-Rodríguez acknowledges the financial support of FPU fellowship from the Spanish Ministry of Education, Culture and Sports. The authors thank the Spanish Ministry of Economy and Competitiveness for the financial support of this work (Project CTQ2015-71436-C2-1-R), which has partial financial support from the FEDER funds of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Belo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, F., Salgado, J.M., Abrunhosa, L. et al. Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor. Bioprocess Biosyst Eng 40, 1123–1132 (2017). https://doi.org/10.1007/s00449-017-1774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1774-2

Keywords

Navigation