Skip to main content
Log in

Successive membrane separation processes simplify concentration of lipases produced by Aspergillus niger by solid-state fermentation

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, we developed a simplified method for producing, separating, and concentrating lipases derived from solid-state fermentation of agro-industrial residues by filamentous fungi. First, we used Aspergillus niger to produce lipases with hydrolytic activity. We analyzed the separation and concentration of enzymes using membrane separation processes. The sequential use of microfiltration and ultrafiltration processes made it possible to obtain concentrates with enzymatic activities much higher than those in the initial extract. The permeate flux was higher than 60 L/m2 h during microfiltration using 20- and 0.45-µm membranes and during ultrafiltration using 100- and 50-kDa membranes, where fouling was reversible during the filtration steps, thereby indicating that the fouling may be removed by cleaning processes. These results demonstrate the feasibility of lipase production using A. niger by solid-state fermentation of agro-industrial residues, followed by successive tangential filtration with membranes, which simplify the separation and concentration steps that are typically required in downstream processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. BCC Research. Global markets for enzymes in industrial applications. Report code MST030C. http://www.bccresearch.com/market-research/ (2016).

  2. Treichel H, Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) A review on microbial lipases production. Food Bioprocess Technol 3 182–196.

    Article  CAS  Google Scholar 

  3. Nagarajan S (2012) New tools for exploring “old friends–microbial lipases”. Appl Biochem Biotechnol 168:1163–1196

    Article  CAS  Google Scholar 

  4. Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486–520

    Article  CAS  Google Scholar 

  5. Szélpál S, Poser O, Ábel M (2013) Enzyme recovery by membrane separation method from waste products of the food industry. Acta Tech. Corviniensis 6:149–154.

    Google Scholar 

  6. Marella C, Muthukumarappan K, Metzger LE (2013) Application of membrane separation technology for developing novel dairy food ingredients. Food Process Technol 4:1–5

    Google Scholar 

  7. Mohanty K, Purkait MK (2012) Membrane technologies and applications. CRC Press, Boca Raton

    Google Scholar 

  8. Saxena A, Tripathi BP, Kumar M, Shahi VK (2009) Membrane-based techniques for the separation and purification of proteins: an overview. Adv Colloid Interface Sci 145:1–22

    Article  CAS  Google Scholar 

  9. Colla LM, Ficanha AMM, Rizzardi J, Bertolin TE, Reinehr CO, Costa JAV (2015) Production and characterization of lipases by two new isolates of Aspergillus through solid-state and submerged fermentation. BioMed Res Int 725959

  10. J.F.M. Burkert, Maugeri F, Rodrigues MI (2004) Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresour Technol 91:77–84

    Article  CAS  Google Scholar 

  11. Argüello MA, Álvarez S, Riera FA, Álvarez R (2003) Enzymatic cleaning of inorganic ultrafiltration membranes used for whey protein fractionation. J Membr Sci 216:121–134

    Article  Google Scholar 

  12. Rodríguez-Fernández DE, Parada JL, Medeiros ABP, Carvalho JC, Lacerda LG, Rodríguez-León JA, Soccol CR (2013) Concentration by ultrafiltration and stabilization of phytase produced by solid-state fermentation. Process Biochem 48:374–379

    Article  Google Scholar 

  13. Sethi BK, Rout JR, Das R, Nanda PK, Sahoo SL (2013) Lipase production by Aspergillus terreus using mustard seed oil cake as a carbon source. Ann Microbiol 63:241–252

    Article  CAS  Google Scholar 

  14. Coradi GV, Visitação VL, Lima EA, Saito LYT, Palmieri DA, Takita MA, Oliva Neto P, Lima VMG (2013) Comparing submerged and solid-state fermentation of agro-industrial residues for the production and characterization of lipase by Trichoderma harzianum. Ann Microbiol 63:533–540

    Article  CAS  Google Scholar 

  15. Bharti MK, Khokhar D, Pandey AK, Gaur AK (2013) Purification and characterization of lipase from Aspergillus japonicus: a potent enzyme for biodiesel production, Natl. Acad. Sci Lett 36:151–156

    CAS  Google Scholar 

  16. Fernández-Lorente G, Ortiz C, Segura RL, Fernández-Lafuente R, Guisán JM, Palomo JM (2005) Purification of different lipases from Aspergillus niger by using a highly selective adsorption on hydrophobic supports. Biotechnol Bioeng 92:773–779

    Article  Google Scholar 

  17. Causserand C, Pierre G, Rapenne S, Schrotter J, Sauvade P, Lorain O (2010) Characterization of ultrafiltration membranes by tracer’s retention: comparison of methods sensitivity and reproducibility. Desalin 250:767–772.

    Article  CAS  Google Scholar 

  18. Silva MF, D.M.G. Freire, Castro AM, Di Luccio M, Mazutti MA, Oliveira JV, Treichel H, Oliveira D (2011) Concentration, partial characterization and immobilization of lipase extract from P. brevicompactum by solid-state fermentation of babassu cake and castor bean cake. Appl Biochem Biotechnol 164:755–766

    Article  CAS  Google Scholar 

  19. Rigo E, Polloni AE, Remonatto D, Arbter F, Menoncin S, Oliveira JV, Oliveira D, Treichel H, Kalil SJ, Ninow JL, Di Luccio M (2010) Esterification activity of novel fungal and yeast lipases. Appl Biochem Biotechnol 162:1881–1888

    Article  CAS  Google Scholar 

  20. Almeida AF, Taulk-Tornisielo SM, Carmona EC (2013) Influence of carbon and nitrogen sources on lipase production by a new isolated Candida viswanathii strain. Ann Microbiol 63:1225–1234

    Article  CAS  Google Scholar 

  21. Golunski S, Astolfi V, Carniel N, Oliveira D, Di Luccio M, Mazutti MA, Treichel H (2011) Ethanol precipitation and ultrafiltration of inulinases from Kluyveromyces marxianus. Sep Purif Technol 78:261–265

    Article  CAS  Google Scholar 

  22. Gottschalk LMF, Bon EPS, Nobrega R (2008) Lignin peroxidase from Streptomyces viridosporus T7A: enzyme concentration using ultrafiltration. Appl Biochem Biotechnol 147:23–32

    Article  CAS  Google Scholar 

  23. Krstic DM, Antov MG, Pericin DM, Höflinger W, Tekic MN (2007) The possibility for improvement of ceramic membrane ultrafiltration of an enzyme solution. Biochem Eng J 33:10–15

    Article  CAS  Google Scholar 

  24. Sá IS, Cabral LMC, Matta VM (2003) Concentração de suco de abacaxi através dos processos com membranas, Braz. J Food Technol 6:53–62

    Google Scholar 

  25. Mello BCBS, Petrus JCC, Hubinger MD (2010) Desempenho do processo de concentração de extratos de própolis por nanofiltração. Ciência e Tecnologia de Alimentos 30:166–172

    Article  Google Scholar 

  26. Chaiklahan R, Chirasuwan N, Loha V, Tia S, Bunnag B (2011) Separation and purification of phycocyanin from Spirulina sp. using a membrane process. Bioresour Technol 102:7159–7164

    Article  CAS  Google Scholar 

  27. Bacchin P, Aimar P, Field RW (2006) Critical and sustainable fluxes: theory, experiments and applications. J Membr Sci 281:42–69

    Article  CAS  Google Scholar 

  28. Peeva PD, Knoche T, Pieper T, Ulbricht M (2012) Cross-flow ultrafiltration of protein solutions through unmodified and surface functionalized polyethersulfone membranes—Effect of process conditions on separation performance. Sep Purif Technol 92:83–92

    Article  CAS  Google Scholar 

  29. Pant D, Adholeya A (2009) Concentration of fungal ligninolytic enzymes by ultrafiltration and their use in distillery effluent decolorization. World J Microbiol Biotechnol 25:1793–1800

    Article  CAS  Google Scholar 

  30. Brião VB, Tavares CRG (2012) Pore blocking mechanism for the recovery of milk solids from dairy wastewater by ultrafiltration. Braz J Chem Eng 29:393–407

    Article  Google Scholar 

  31. Hwang K, Chiang Y (2014) Comparisons of membrane fouling and separation efficiency in protein/polysaccharide cross-flow microfiltration using membranes with different morphologies. Sep Purif Technol 125:74–82

    Article  CAS  Google Scholar 

  32. Rosas I, Collado S, Gutiérrez A, Díaz M (2014) Fouling mechanisms of Pseudomonas putida on PES microfiltration membranes. J Membr Sci 465:27–33

    Article  CAS  Google Scholar 

  33. Mozia S, Darowna D, Orecki A, Wróbel R, Wiliszewska K, Morawski AW (2014) Microscopic studies on TiO2 fouling of MF/UF polyethersulfone membranes in a photocatalytic membrane reactor. J Membr Sci 470:356–368

    Article  CAS  Google Scholar 

  34. Arahman N, Arifin B, Mulyati S, Ohmukai Y, Matsuyama H (2012) Structure change of polyethersulfone hollow fiber membrane modified with pluronic F127, polyvinylpyrrolidone, and tetronic 1307. Mater Sci Appl 3:72–77.

    CAS  Google Scholar 

  35. H. Espinoza-Gómez, S.W. Lin (2003) Development of hydrophilic ultrafiltration membrane from polysulfone-polyvinylpyrrolidone. Rev Soc Quim Mex 47:53–57.

    Google Scholar 

  36. Ramos-Olmos R, Rogel-Hernández E, Flores-López L, Lin SW, Espinoza-Gómez H (2008) Synthesis and characterization of asymmetric ultrafiltration membrane made with recycled polystyrene foam and different additives, J. Chil. Chem Soc 53:1705–1708

    CAS  Google Scholar 

  37. Wyart Y, Georges G, Deumié C, Amra C, Moulin P (2008) Membrane characterization by microscopic methods: multiscale structure. J Membr Sci 315:82–92

    Article  CAS  Google Scholar 

  38. Tres MV, Ferraz HC, Dallago RM, Di Luccio M, Oliveira JV (2010) Characterization of polymeric membranes used in vegetable oil/organic solvents separation. J Membr Sci 362:495–500

    Article  CAS  Google Scholar 

  39. Poletto P, Duarte J., Lunkes MS, Santos V, Zeni M, Meireles CS, Filho GR, Bottino A (2012) Avaliação das características de transporte em membranas de poliamida 66 preparadas com diferentes solventes. Polímeros 22:273–277.

    Article  CAS  Google Scholar 

  40. Rajesh S, Murthy ZVP (2014) Ultrafiltration membranes from waste polyethylene terephthalate and additives: synthesis and characterization. Quim Nova 37:653–657

    Article  CAS  Google Scholar 

  41. Irfan M, Idris A, Yusof NM, Khairuddin NFM, Akhmal H (2014) Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes. J Membr Sci 467:73–84

    Article  CAS  Google Scholar 

  42. Razzaghi MH, Safekordi A, Tavakolmoghadam M, Rekabdar F, Hemmati M (2014) Morphological and separation performance study of PVDF/CA blend membranes. J Membr Sci 470:547–557

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Universidade Regional Integrada do Alto Uruguai e das Missões (URI) and Universidade de Passo Fundo (UPF) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Oliveira Reinehr.

Ethics declarations

Human participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinehr, C.O., Treichel, H., Tres, M.V. et al. Successive membrane separation processes simplify concentration of lipases produced by Aspergillus niger by solid-state fermentation. Bioprocess Biosyst Eng 40, 843–855 (2017). https://doi.org/10.1007/s00449-017-1749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1749-3

Keywords

Navigation