Skip to main content
Log in

Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, we discussed the development and optimization of an intensified CHO culture process, highlighting medium and control strategies to improve lactate metabolism. A few strategies, including supplementing glucose with other sugars (fructose, maltose, and galactose), controlling glucose level at <0.2 mM, and supplementing medium with copper sulfate, were found to be effective in reducing lactate accumulation. Among them, copper sulfate supplementation was found to be critical for process optimization when glucose was in excess. When copper sulfate was supplemented in the new process, two-fold increase in cell density (66.5 ± 8.4 × 106 cells/mL) and titer (11.9 ± 0.6 g/L) was achieved. Productivity and product quality attributes differences between batch, fed-batch, and concentrated fed-batch cultures were discussed. The importance of process and cell metabolism understanding when adapting the existing process to a new operational mode was demonstrated in the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abu-Absi S, Xu S, Graham H, Dalal N, Boyer M, Dave K (2014) Cell culture process operations for recombinant protein production. Adv Biochem Eng Biotechnol 139:35–68

    CAS  Google Scholar 

  2. Luan YT, Mutharasan R, Magee WE (1987) Strategies to extend longevity of hybridomas in culture and promote yield of monoclonal antibodies. Biotechnol Lett 9:691–696

    Article  CAS  Google Scholar 

  3. Bibila TA, Robinson DK (1995) In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnol Prog 11:1–13

    Article  CAS  Google Scholar 

  4. Merten OW, Cruz PE, Rochette C, Geny-Fiamma C, Bouquet C, Gonçalves D, Danos O, Carrondo MJT (2001) Comparison of different bioreactor systems for the production of high titer retroviral vectors. Biotechnol Prog 17:326–335

    Article  CAS  Google Scholar 

  5. Huang Y-M, Hu W, Rustandi E, Chang K, Yusuf-Makagiansar H, Ryll T (2010) Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol Prog 26:1400–1410

    Article  CAS  Google Scholar 

  6. Lu F, Toh PC, Burnett I, Li F, Hudson T, Amanullah A, Li J (2013) Automated dynamic fed-batch process and media optimization for high productivity cell culture process development. Biotechnol Bioeng 110:191–205

    Article  CAS  Google Scholar 

  7. Ma N, Ellet J, Okediadi C, Hermes P, McCormick E, Casnocha S (2009) A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: improved productivity and lactate metabolism. Biotechnol Prog 25:1353–1363

    Article  Google Scholar 

  8. Gagnon M, Hiller G, Luan Y-T, Kittredge A, DeFelice J, Drapeau D (2011) High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures. Biotechnol Bioeng 108:1328–1337

    Article  CAS  Google Scholar 

  9. Konstantinov K, Goudar C, Ng M, Meneses R, Thrift J, Chuppa S, Matanguihan C, Michaels J, Naveh D (2006) The “push-to-low” approach for optimization of high-density perfusion cultures of animal cells. Adv Biochem Eng Biotechnol 101:75–98

    CAS  Google Scholar 

  10. Warikoo V, Godawat R, Brower K, Jain S, Cummings D, Simons E, Johnson T, Walther J, Yu M, Wright B, McLarty J, Karey KP, Hwang C, Zhou W, Riske F, Konstantinov K (2012) Integrated continuous production of recombinant therapeutic proteins. Biotechnol Bioeng 109:3018–3029

    Article  CAS  Google Scholar 

  11. Clincke M-F, Mölleryd C, Zhang Y, Lindskog E, Walsh K, Chotteau V (2013) Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor™. Part I. Effect of the cell density on the process. Biotechnol Prog 29:754–767

    Article  CAS  Google Scholar 

  12. Lim J, Sinclair A, Shevitz J, Bonham-Carter J (2011) An economic comparison of three cell culture techniques. Biopharm Int 24:54–60

    Google Scholar 

  13. Zijlstra G (2013) New approaches in continuous biomanufacturing: continuous XD® cell cultures (at 100 million cells/mL and beyond) coupled to the Rhobust® EBA integrated clarification and purification technology. Integrated continuous biomanufacturing. Castelldefels, Spain

  14. Yang WC, Minkler DF, Kshirsagar R, Ryll T, Huang Y-M (2016) Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity. J Biotechnol 217:1–11

    Article  CAS  Google Scholar 

  15. Han YK, Kim Y-G, Kim JY, Lee GM (2010) Hyperosmotic stress induces autophagy and apoptosis in recombinant Chinese hamster ovary cell culture. Biotechnol Bioeng 105:1187–1192

    CAS  Google Scholar 

  16. Zhu MM, Goyal A, Rank DL, Gupta SK, Boom TV, Lee SS (2005) Effects of elevated pCO2 and osmolality on growth of CHO cells and production of antibody-fusion protein B1: a case study. Biotechnol Prog 21:70–77

    Article  Google Scholar 

  17. Osman JJ, Birch J, Varley J (2002) The response of GS-NS0 myeloma cells to single and multiple pH perturbations. Biotechnol Bioeng 79:398–407

    Article  CAS  Google Scholar 

  18. Langheinrich C, Nienow AW (1999) Control of pH in large-scale, free suspension animal cell bioreactors: alkali addition and pH excursions. Biotechnol Bioeng 66:171–179

    Article  CAS  Google Scholar 

  19. Xu S, Abu-Absi S, Pla I, Maranga L (2014) Scale dependence of lactate metabolism in mammalian cell cultures. ACS Spring Meeting, Dallas, TX

  20. Qian Y, Khattak SF, Xing Z, He A, Kayne PS, Qian N-X, Pan S-H, Li ZJ (2011) Cell culture and gene transcription effects of copper sulfate on Chinese hamster ovary cells. Biotechnol Prog 27:1190–1194

    Article  CAS  Google Scholar 

  21. Luo J, Vijayasankaran N, Autsen J, Santuray R, Hudson T, Amanullah A, Li F (2012) Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol Bioeng 109:146–156

    Article  CAS  Google Scholar 

  22. Kang S, Xiao G, Ren D, Zhang Z, Le N, Trentalange M, Gupta S, Lin H, Bondarenko PV (2014) Proteomics analysis of altered cellular metabolism induced by insufficient copper level. J Biotechnol 189:15–26

    Article  CAS  Google Scholar 

  23. Yuk IH, Russell S, Tang Y, Hsu W-T, Mauger JB, Aulakh RPS, Luo J, Gawlitzek M, Joly JC (2015) Effects of copper on CHO cells: cellular requirements and product quality considerations. Biotechnol Prog 31:226–238

    Article  CAS  Google Scholar 

  24. Ishida S, Andreux P, Poitry-Yamate C, Auwerx J, Hanahan D (2013) Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc Natl Acad Sci USA 110:19507–19512

    Article  CAS  Google Scholar 

  25. Zagari F, Jordan M, Stettler M, Broly H, Wurm FM (2013) Lactate metabolism shift in CHO cell culture: the role of mitochondrial oxidative activity. N Biotechnol 30:238–245

    Article  CAS  Google Scholar 

  26. Mulukutla BC, Yongky A, Grimm S, Daoutidis P, Hu W-S (2015) Multiplicity of steady states in glycolysis and shift of metabolic state in cultured mammalian cells. PLoS One 10:e0121561

    Article  Google Scholar 

  27. Altamirano C, Paredes C, Cairó JJ, Gòdia F (2000) Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine. Biotechnol Prog 16:69–75

    Article  CAS  Google Scholar 

  28. Glacken MW, Fleischaker RJ, Sinskey AJ (1986) Reduction of waste product excretion via nutrient control: possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol Bioeng 28:1376–1389

    Article  CAS  Google Scholar 

  29. Wlaschin KF, Hu W-S (2007) Engineering cell metabolism for high-density cell culture via manipulation of sugar transport. J Biotechnol 131:168–176

    Article  CAS  Google Scholar 

  30. Berrios J, Altamirano C, Osses N, Gonzalez R (2011) Continuous CHO cell cultures with improved recombinant protein productivity by using mannose as carbon source: metabolic analysis and scale-up simulation. Chem Eng Sci 66:2431–2439

    Article  CAS  Google Scholar 

  31. Plagemann PG, Wohlhueter RM, Graff J, Erbe J, Wilkie P (1981) Broad specificity hexose transport system with differential mobility of loaded and empty carrier, but directional symmetry, is common property of mammalian cell lines. J Biol Chem 256:2835–2842

    CAS  Google Scholar 

  32. Barngrover D, Thomas J, Thilly WG (1985) High density mammalian cell growth in Leibovitz bicarbonate-free medium: effects of fructose and galactose on culture biochemistry. J Cell Sci 78:173–189

    CAS  Google Scholar 

  33. Grainger RK, James DC (2013) CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation. Biotechnol Bioeng 110:2970–2983

    Article  CAS  Google Scholar 

  34. Gramer MJ, Eckblad JJ, Donahue R, Brown J, Shultz C, Vickerman K, Priem P, van den Bremer ETJ, Gerritsen J, van Berkel PHC (2011) Modulation of antibody galactosylation through feeding of uridine, manganese chloride, and galactose. Biotechnol Bioeng 108:1591–1602

    Article  CAS  Google Scholar 

  35. Hossler P, Wang M, McDermott S, Racicot C, Chemfe K, Zhang Y, Chumsae C, Manuilov A (2015) Cell culture media supplementation of bioflavonoids for the targeted reduction of acidic species charge variants on recombinant therapeutic proteins. Biotechnol Prog 31:1039–1052

    Article  CAS  Google Scholar 

  36. Kishishita S, Nishikawa T, Shinoda Y, Nagashima H, Okamoto H, Takuma S, Aoyagi H (2015) Effect of temperature shift on levels of acidic charge variants in IgG monoclonal antibodies in Chinese hamster ovary cell culture. J Biosci Bioeng 119:700–705

    Article  CAS  Google Scholar 

  37. Barnabé N, Butler M (1994) Effect of temperature on nucleotide pools and monoclonal antibody production in a mouse hybridoma. Biotechnol Bioeng 44:1235–1245

    Article  Google Scholar 

  38. Sureshkumar GK, Mutharasan R (1991) The influence of temperature on a mouse–mouse hybridoma growth and monoclonal antibody production. Biotechnol Bioeng 37:292–295

    Article  CAS  Google Scholar 

  39. Europa AF, Gambhir A, Fu P-C, Hu W-S (2000) Multiple steady states with distinct cellular metabolism in continuous culture of mammalian cells. Biotechnol Bioeng 67:25–34

    Article  CAS  Google Scholar 

  40. Maranga L, Goochee CF (2006) Metabolism of PER.C6™ cells cultivated under fed-batch conditions at low glucose and glutamine levels. Biotechnol Bioeng 94:139–150

    Article  CAS  Google Scholar 

  41. Chee Furng Wong D, Tin Kam Wong K, Tang Goh L, Kiat Heng C, Gek Sim Yap M (2005) Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures. Biotechnol Bioeng 89:164–177

    Article  Google Scholar 

  42. Xu S, Gupta B, Hoshan L, Chen H (2015) Rapid early process development enabled by commercial chemically defined media and microbioreactors. Biopharm Int 28:28–33

    CAS  Google Scholar 

  43. Yongky A, Lee J, Le T, Mulukutla BC, Daoutidis P, Hu W-S (2015) Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells. Biotechnol Bioeng 112:1437–1445

    Article  CAS  Google Scholar 

  44. Templeton N, Dean J, Reddy P, Young JD (2013) Peak antibody production is associated with increased oxidative metabolism in an industrially relevant fed-batch CHO cell culture. Biotechnol Bioeng 110:2013–2024

    Article  CAS  Google Scholar 

  45. Charaniya S, Le H, Rangwala H, Mills K, Johnson K, Karypis G, Hu W-S (2010) Mining manufacturing data for discovery of high productivity process characteristics. J Biotechnol 147:186–197

    Article  CAS  Google Scholar 

  46. Lee S-Y, Kwon Y-B, Cho J-M, Park K-H, Chang S-J, Kim D-I (2012) Effect of process change from perfusion to fed-batch on product comparability for biosimilar monoclonal antibody. Process Biochem 47:1411–1418

    Article  CAS  Google Scholar 

  47. Meuwly F, Weber U, Ziegler T, Gervais A, Mastrangeli R, Crisci C, Rossi M, Bernard A, von Stockar U, Kadouri A (2006) Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. J Biotechnol 123:106–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mike Caruso, Alejandro Baloco, Debra Lutz, and D’Juan Gibson for bioreactor operations and media preparation, Elizabeth Wu for titer assay, Heera Khan, Mike Rauscher, and Sonja Battle for purification and quality assays. We would also like to thank John Bowers, Balrina Gupta, and David Roush for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Hoshan, L. & Chen, H. Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations. Bioprocess Biosyst Eng 39, 1689–1702 (2016). https://doi.org/10.1007/s00449-016-1644-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1644-3

Keywords

Navigation