Skip to main content
Log in

Incorporation of negative rules and evolution of a fuzzy controller for yeast fermentation process

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The control of bioprocesses can be very challenging due to the fact that these kinds of processes are highly affected by various sources of uncertainty like the intrinsic behavior of the used microorganisms. Due to the reason that these kinds of process uncertainties are not directly measureable in most cases, the overall control is either done manually because of the experience of the operator or intelligent expert systems are applied, e.g., on the basis of fuzzy logic theory. In the latter case, however, the control concept is mainly represented by using merely positive rules, e.g., “If A then do B”. As this is not straightforward with respect to the semantics of the human decision-making process that also includes negative experience in form of constraints or prohibitions, the incorporation of negative rules for process control based on fuzzy logic is emphasized. In this work, an approach of fuzzy logic control of the yeast propagation process based on a combination of positive and negative rules is presented. The process is guided along a reference trajectory for yeast cell concentration by alternating the process temperature. The incorporation of negative rules leads to a much more stable and accurate control of the process as the root mean squared error of reference trajectory and system response could be reduced by an average of 62.8 % compared to the controller using only positive rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

YCC:

Yeast cell concentration

FLC:

Fuzzy logic controller

RMSE:

Root mean squared error

AFCE:

Absolute final control error

P/N:

Positive/negative

References

  1. Baruch IS, Hernandez SM (2011) Decentralized direct I-term fuzzy-neural control of an anaerobic digestion bioprocess plant. Comput Intell Control Autom (CICA) 2011:36–43. doi:10.1109/cica.2011.5945753

    Article  Google Scholar 

  2. Hernandez SC, Sanchez EN, Beteau JF (2010) Fuzzy control strategy for an anaerobic wastewater treatment process

  3. Hernandez SC, Sanchez EN, Beteau JF (2012) Fuzzy control structure for an anaerobic fluidised bed. Int J Control 85(12):1898–1912. doi:10.1080/00207179.2012.713514

    Article  Google Scholar 

  4. Shu-Hsien L (2005) Expert system methodologies and applications—a decade review from 1995 to 2004. Expert Syst Appl 28(1):93–103. doi:10.1016/j.eswa.2004.08.003

    Article  Google Scholar 

  5. Karakuzu C, Tuerker M, Oeztuerk S (2006) Modelling, on-line state estimation and fuzzy control of production scale fed-batch baker’s yeast fermentation. Control Eng Pract 14(8):959–974

    Article  Google Scholar 

  6. Kasperski A, Miśkiewicz T (2002) An adaptive fuzzy logic controller using the respiratory quotient as an indicator of overdosage in the baker’s yeast process. Biotechnol Lett 24(1):17–21

    Article  CAS  Google Scholar 

  7. Kiendl H (1997) Fuzzy control methodenorientiert. Oldenbourg, Munchen

    Google Scholar 

  8. Branson J, Lilly J Incorporation of negative rules into fuzzy inference systems. In: Decision and control, 1999. Proceedings of the 38th IEEE conference on. IEEE, New York, pp 5283–5288

  9. Branson JS, Lilly JH (2001) Incorporation, characterization, and conversion of negative rules into fuzzy inference systems. Fuzzy Syst IEEE Trans 9(2):253–268

    Article  Google Scholar 

  10. Lilly JH (2007) Evolution of a negative-rule fuzzy obstacle avoidance controller for an autonomous vehicle. Fuzzy Syst IEEE Trans 15(4):718–728

    Article  Google Scholar 

  11. Kim J, An J (2011) A fuzzy obstacle avoidance controller using a lookup-table sharing method and its applications for mobile robots. Int J Adv Rob Syst 8(5):39–48

    Google Scholar 

  12. Jun W, Shitong W, F-I Chung (2011) Positive and negative fuzzy rule system, extreme learning machine and image classification. Int J Mach Learn Cybernet 2(4):261–271

    Article  Google Scholar 

  13. Nguyen TM, Wu QJ A combination of positive and negative fuzzy rules for image classification problem. In: Machine learning and applications, 2008. ICMLA’08. Seventh international conference on, 2008. IEEE, New York, pp 741–746

  14. Nguyen TM, Wu QJ (2010) Fuzzy system with positive and negative rules. INTECH Open Access Publisher

  15. Kurz T (2002) Mathematically based management of Saccharomyces sp. batch propagations and fermentations. Dissertation. TU München, Freising

    Google Scholar 

  16. Pham HTB, Larsson G, Enfors S-O (1998) Growth and energy metabolism in aerobic fed-batch cultures of Saccharomyces cerevisiae: simulation and model verification. Biotechnol Bioeng 60(4):474–482

    Article  CAS  Google Scholar 

  17. Sonnleitner B, Kaeppeli O (1986) Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol Bioeng 28(6):927–937

    Article  CAS  Google Scholar 

  18. Sweere APJ, Giesselbach J, Barendse R, Krieger R, Honderd G, Luyben KCAM (1988) Modelling the dynamic behaviour of Saccharomyces cerevisiae and its application in control experiments. Appl Microbiol Biotechnol 28(2):116–127. doi:10.1007/bf00694298

    Article  CAS  Google Scholar 

  19. Crabtree HG (1929) Observations on the carbohydrate metabolism of tumours. Biochem J 23(3):536

    Article  CAS  Google Scholar 

  20. Ratkowsky D, Olley J, McMeekin T, Ball A (1982) Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149(1):1–5

    CAS  Google Scholar 

  21. Ratkowsky DALRK, McMeekin TA, Stokes AN, Chandler RE (1983) Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154(3):1222

    CAS  Google Scholar 

  22. Hartmeier W (1972) Untersuchungen über die Kinetik der mikrobiellen Sauerstoff-Aufnahme und den Einfluß des Sauerstoff-Partialdruckes auf den Stoffwechsel von Saccharomyces cerevisiae. Ph.D. Thesis. Fachbereich Lebensmitteltechnologie und Biotechnologie: Technische Universität Berlin

  23. Gschwend-Petrik M (1983) Dynamische Untersuchungen zur Stoffwechselregulation und Ethanolbildung bei Saccharomyces uvarum, vol 7441. Eidgenössische Technische Hochschule Zürich, Zurich

    Google Scholar 

  24. Cartwright CP, Rose AH, Calderbank J, Keenan MH (1989) Solute transport. The yeasts 3:5–56

    Google Scholar 

  25. Hutter A, Oliver S (1998) Ethanol production using nuclear petite yeast mutants. Appl Microbiol Biotechnol 49(5):511–516

    Article  CAS  Google Scholar 

  26. Mamdani EH (1977) Application of fuzzy logic to approximate reasoning using linguistic synthesis. Comput IEEE Trans C-26(12):1182–1191

    Article  Google Scholar 

  27. Mamdani EH (1976) Advances in the linguistic synthesis of fuzzy controllers. Int J Man Mach Stud 8(6):669–678

    Article  Google Scholar 

  28. Passino KM, Yurkovich S, Reinfrank M (1998) Fuzzy control, vol 42. Citeseer

Download references

Acknowledgments

This work was supported by the Bayerische Forschungsstiftung Grant number AZ 994-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Birle.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birle, S., Hussein, M.A. & Becker, T. Incorporation of negative rules and evolution of a fuzzy controller for yeast fermentation process. Bioprocess Biosyst Eng 39, 1225–1233 (2016). https://doi.org/10.1007/s00449-016-1601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1601-1

Keywords

Navigation