Skip to main content
Log in

Evaluation of different nitrous oxide production models with four continuous long-term wastewater treatment process data series

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Five activated sludge models describing N2O production by ammonium oxidising bacteria (AOB) were compared to four different long-term process data sets. Each model considers one of the two known N2O production pathways by AOB, namely the AOB denitrification pathway and the hydroxylamine oxidation pathway, with specific kinetic expressions. Satisfactory calibration could be obtained in most cases, but none of the models was able to describe all the N2O data obtained in the different systems with a similar parameter set. Variability of the parameters can be related to difficulties related to undescribed local concentration heterogeneities, physiological adaptation of micro-organisms, a microbial population switch, or regulation between multiple AOB pathways. This variability could be due to a dependence of the N2O production pathways on the nitrite (or free nitrous acid—FNA) concentrations and other operational conditions in different systems. This work gives an overview of the potentialities and limits of single AOB pathway models. Indicating in which condition each single pathway model is likely to explain the experimental observations, this work will also facilitate future work on models in which the two main N2O pathways active in AOB are represented together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahn JH, Kim S, Park H et al (2010) N2O emissions from activated sludge processes, 2008–2009: results of a national monitoring survey in the US. Environ Sci Technol 44:4505–4511. doi:10.1021/es903845y

    Article  CAS  Google Scholar 

  2. Kampschreur MJ, Temmink H, Kleerebezem R, Jetten MS, van Loosdrecht MC (2009) Nitrous oxide emission during wastewater treatment. Water Res 43:4093–4103. doi:10.1016/j.watres.2009.03.001

    Article  CAS  Google Scholar 

  3. Daelman MRJ, van Voorthuizen EM, van Dongen UGJM, et al. (2013) Full-scale evaluation of process conditions leading to the emission of nitrous oxide from municipal wastewater treatment plants. In: Proceedings of WEF/IWA nutrient removal and recovery 2013: trends in resource recovery and use. Vancouver, British Columbia, Canada, July 28–31

  4. Guo L, Lamaire-Chad C, Bellandi G, Daelman M, Amerlinck Y, Maere T, Nous J, Flameling T, Weijers S, van Loosdrecht MCM, Volcke EIP, Nopens I, Vanrolleghem PA (2013a) High-Frequency Field Measurement of Nitrous oxide (N2O) Gas emissions and influencing factors at WWTPs under dry and wet weather conditions. In: Proceedings of WEF/IWA nutrient removal and recovery 2013: trends in resource recovery and use. Vancouver, British Columbia, Canada, July 28–31

  5. Wunderlin P, Mohn J, Joss A, Emmenegger L, Siegrist H (2012) Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res 46:1027–1037

    Article  CAS  Google Scholar 

  6. Guo L, Vanrolleghem PA (2013) Calibration and validation of an activated sludge model for greenhouse gases no. 1 (ASMG1): prediction of temperature-dependent N2O emission dynamics. Bioprocess Biosyst Eng. doi:10.1007/s00449-013-0978-3

    Google Scholar 

  7. Castro-Barros CM, Daelman MRJ, Mampaey KE, van Loosdrecht MC, Volcke EI (2015) Effect of aeration regime on N2O emission from partial nitritation-anammox in a full-scale granular sludge reactor. Water Res 68:793–803. doi:10.1016/j.watres.2014.10.056

    Article  CAS  Google Scholar 

  8. Hiatt WC, Grady CPL (2008) An updated process model for carbon oxidation, nitrification, and denitrification. Water Environ Res 80:2145–2156. doi:10.2175/106143008X304776

    Article  CAS  Google Scholar 

  9. Pan Y, Ni B-J, Yuan Z (2013) Modeling electron competition among nitrogen oxides reduction and N2O accumulation in denitrification. Environ Sci Technol 47:11083–11091. doi:10.1021/es402348n

    Article  CAS  Google Scholar 

  10. Chandran K, Stein LY, Klotz MG, van Loosdrecht MCM (2011) Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems. Biochem Soc Trans 39:1832–1837. doi:10.1042/BST20110717

    Article  CAS  Google Scholar 

  11. Stein LY (2011) Surveying N2O-producing pathways in bacteria. Methods Enzymol 486:131–152. doi:10.1016/B978-0-12-381294-0.00006-7

    Article  CAS  Google Scholar 

  12. Mampaey KE, Beuckels B, Kampschreur MJ, Kleerebezem R, van Loosdrecht MC, Volcke EI (2013) Modelling nitrous and nitric oxide emissions by autotrophic ammonia-oxidizing bacteria. Environ Technol 34:1555–1566

    Article  CAS  Google Scholar 

  13. Ni B-J, Ruscalleda M, Pellicer-Nàcher C, Smets BF (2011) Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: extensions to the general ASM models. Environ Sci Technol 45:7768–7776. doi:10.1021/es201489n

    Article  CAS  Google Scholar 

  14. Ni B-J, Yuan Z, Chandran K, Vanrolleghem PA, Murthy S (2013) Evaluating four mathematical models for nitrous oxide production by autotrophic ammonia-oxidizing bacteria. Biotechnol Bioeng 110:153–163. doi:10.1002/bit.24620

    Article  CAS  Google Scholar 

  15. Ni B-J, Ye L, Law Y, Byers C, Yuan Z (2013) Mathematical modeling of nitrous oxide (N2O) emissions from full-scale wastewater treatment plants. Environ Sci Technol 47:7795–7803. doi:10.1021/es4005398

    Article  CAS  Google Scholar 

  16. Ni B-J, Peng L, Law Y, Guo J, Yuan Z (2014) Modeling of nitrous oxide production by autotrophic ammonia-oxidizing bacteria with multiple production pathways. Environ Sci Technol 48:3916–3924. doi:10.1021/es405592h

    Article  CAS  Google Scholar 

  17. Guo L, Vanrolleghem PA (2014) Full-scale simulation of N2O emissions with ASMG2d and elucidation of its different production and emission sources in nitrogen (N) and phosphorus (P) removed systems (Under review)

  18. Pocquet M, Queinnec I, Spérandio M (2013) Adaptation and identification of models for nitrous oxide (N2O) production by autotrophic nitrite reduction. In: Proceedings 11th IWA conference on instrumentation, control and automation (ICA2013). Narbonne, France, September 18–20

  19. Ye L, Ni B-J, Law Y, Byers C, Yuan Z (2014) A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators. Water Res 48:257–268. doi:10.1016/j.watres.2013.09.037

    Article  CAS  Google Scholar 

  20. Reichert P (1998) User manual, computer program for the identification and simulation of aquatic systems

  21. Vanhooren H, Meirlaen J, Amerlinck Y, Claeys F, Vangheluwe H, Vanrolleghem PA (2003) WEST: modelling biological wastewater treatment. http://www.iwaponline.com/jh/005/jh0050027.htm. Accessed 29 Nov 2014

  22. Houweling D, Wunderlin P, Dold P, Bye C, Joss A, Siegrist H (2011) N2O emissions: modeling the effect of process configuration and diurnal loading patterns. Water Environ Res 83:2131–2139

    Article  CAS  Google Scholar 

  23. Terada A, Sugawara S, Yamamoto T, Zhou S, Koba K, Hosomi M (2013) Physiological characteristics of predominant ammonia-oxidizing bacteria enriched from bioreactors with different influent supply regimes. Biochem Eng J 79:153–161. doi:10.1016/j.bej.2013.07.012

    Article  CAS  Google Scholar 

  24. Pocquet M, Wu Z, Queinnec I, Spérandio M (2016) A two pathway model for N2O emissions by ammonium oxidizing bacteria supported by the NO/N2O variation. Water Res 88:948–959

  25. Rathnayake RMLD, Song Y, Tumendelger A, Oshiki M, Ishii S, Satoh H, Toyoda S, Yoshida N, Okabe S (2013) Source identification of nitrous oxide on autotrophic partial nitrification in a granular sludge reactor. Water Res 47:7078–7086. doi:10.1016/j.watres.2013.07.055

    Article  CAS  Google Scholar 

  26. Toyoda S, Suzuki Y, Hattori S, Yamada K, Fujii A, Yoshida N, Kouno R, Murayama K, Shiomi H (2011) Isotopomer analysis of production and consumption mechanisms of N2O and CH4 in an advanced wastewater treatment system. Environ Sci Technol 45:917–922. doi:10.1021/es102985u

    Article  CAS  Google Scholar 

  27. Wunderlin P, Lehmann MF, Siegrist H, Tuzson B, Joss A, Emmenegger L, Mohn J (2013) Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment. Environ Sci Technol 47:1339–1348. doi:10.1021/es303174x

    Article  CAS  Google Scholar 

  28. Law Y, Lant P, Yuan Z (2013) The confounding effect of nitrite on N2O production by an enriched ammonia-oxidizing culture. Environ Sci Technol 47:7186–7194. doi:10.1021/es4009689

    CAS  Google Scholar 

Download references

Acknowledgments

The research project and fellowship of Mathieu Pocquet was supported by the National French Research Agency (ANR). Bing-Jie Ni acknowledges the support of an Australian Research Council Discovery Project (DP130103147). The work at Université Laval benefitted from the financial support obtained through the TECC project of the Québec Ministry of Economic Development, Innovation and Exports (MDEIE) and the research project funded by the Flemish Fund for Scientific Research (FWO—G.A051.10). Peter Vanrolleghem holds the Canada Research Chair in Water Quality Modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Spérandio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spérandio, M., Pocquet, M., Guo, L. et al. Evaluation of different nitrous oxide production models with four continuous long-term wastewater treatment process data series. Bioprocess Biosyst Eng 39, 493–510 (2016). https://doi.org/10.1007/s00449-015-1532-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1532-2

Keywords

Navigation