Skip to main content
Log in

Studies on light intensity distribution inside an open pond photo-bioreactor

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Light intensity profiles inside an open tank were studied using ANSYS Fluent. Experiments were performed by taking Scenedesmus arcuatus, green microalgae at three different concentrations under actual sunlight conditions. Absorption of light intensity at different depths was measured experimentally. The results generated from CFD simulations were compared with the experimental results and the cornet model. It has been found that there is a good agreement between the light intensity profile obtained from the CFD simulation and that calculated using the Cornet’s model. Light intensity profiles at different depths were calculated using CFD simulation by varying the dimensions of the tank. The effect of wall reflectivity, diffuse fraction and scattering phase function on light profile in side open tank are also studied using CFD simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PBR:

Photo-bioreactor

PAR:

Photo synthetically active radiation (μmol m−2s−1 or photons)

RTE:

Radiative transport equation

DO:

Discrete ordinate Method

OD:

Optical density

A :

Absorbance

L :

Light path length (m)

n :

Refractive index of the medium

σ :

Stefan–Boltzmann constant

T :

Local temperature (K)

Ф:

Phase function

Ω′:

Solid angle (sr−1)

X :

Microalgae density (kg/m3)

E a :

Mass absorption coefficient (m2/kg)

E s :

Mass scattering coefficient (m2/kg)

I 0 :

Incident radiation (μmol m−2s−1)

I :

Local radiation intensity (μmol m−2s−1)

\(\mathop r\limits^{ \to }\) :

Position vector

\(\overrightarrow {s}\) :

Direction vector

\(\overrightarrow {s}^{\prime }\) :

Scattering direction vector

σ s :

Scattering coefficient (m−1)

k :

Absorption coefficient (m−1)

β :

Extinction coefficient (m−1)

ω :

Single scattering albedo

N :

Cell number density (cells/m3)

τ :

Transmittivity

ε :

Molar absorptivity

f d :

Diffuse fraction

q :

Radiative flux (W/m2)

Band-0:

400–500 nm

Band-1:

500–650 nm

Band-2:

650–700 nm

λ :

At particular wavelength

w :

Wall

In:

Incoming

Out:

Outgoing

a :

Absorption

s :

Scattering

d :

Diffuse

References

  1. Pulz O, Scheibenbogen K (1998) Photo-bioreactors: design and performance with respect to light energy input, Advance. Bio Chem Eng Biotechnol 59:123–152

    Article  CAS  Google Scholar 

  2. Katsuda T et al (2000) Light intensity distribution in the externally illuminated cylindrical photo-bioreactor and its application to hydrogen production by Rhodobacter capsulatus. Biochem Eng 5:157–164

    Article  CAS  Google Scholar 

  3. Richmond A (2004) Principles for attaining maximal microalgal productivity in photo-bioreactors: an overview. Hydrobiologia 512(1–3):33–37

    Article  Google Scholar 

  4. Berberoglu H, Gomez P, Pilon L (2009) Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. used for CO2 fixation and biofuel production. J Quant Spectrosc Radiat Transfer 110:1879–1893

    Article  CAS  Google Scholar 

  5. Berberoglu H, Pilon L (2007) Experimental measurements of the radiation characteristics of Anabaena variabilis ATCC 29413-U and Rhodobacter sphaeroides ATCC 49419. Int J Hydrogen Energy 32:4772–4785

    Article  CAS  Google Scholar 

  6. Privoznik KG, Daniel KJ, Incropera FP (1978) Absorption, extinction and phase function measurements for algal suspensions of Chlorella pyrenoidosa. J Quant Spectrosc Radiat Transf 20:345–352

    Article  Google Scholar 

  7. Houf G, Incropera FP (1980) An assessment of techniques for predicting radiation transfer in aqueous media-I. J Quant Spectrosc Radiat Transf 23:101

    Article  CAS  Google Scholar 

  8. Cornet JF, Dussap CG, Gros JB, Binois C, Lasseur C (1995) A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photo-bioreactors. Chem Eng Sci 50:1489–1500

    Article  CAS  Google Scholar 

  9. Cornet JF, Dussap CG, Dubertret G (1992) A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photo-bioreactors, I. Coupling between light transfer and growth kinetics. Biotechnol Bioeng 40:817–825

    Article  CAS  Google Scholar 

  10. Cornet JF, Dussap CG, Cluzel P, Dubertret G (1992) A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photo-bioreactors, II. Identification of kinetic parameters under light and mineral limitations. Biotech Bioeng 40:826–834

    Article  CAS  Google Scholar 

  11. Acien Fernandez FG, Garcıa Camacho F, Sanchez Perez JA, Fernandez Sevilla JM, Molina Grima E (1997) A model for light distribution and average solar irradiance inside outdoor tubular photo-bioreactors for the microalgal mass culture. Biotechnol Bioeng 55:701

    Article  CAS  Google Scholar 

  12. Bitog JP et al (2011) Application of computational fluid dynamics for modelling and designing photo-bioreactors for microalgae production: a review. Comput Electron Agric 76:131–147

    Article  Google Scholar 

  13. Pareek V, Cox S, Adesina AA (2003) Light intensity distribution in photo-catalytic reactors using a finite volume method, Third international conference on CFD in the minerals and process industries. CSIRO, Melbourne, pp 10–12

    Google Scholar 

  14. Pareek V, Cox SJ, Brungs MP, Young B, Adesina AA (2003) Computational fluid dynamic (CFD) simulation of a pilot-scale annular bubble column photo-catalytic reactor. Chem Eng Sci 58:859–865

    Article  CAS  Google Scholar 

  15. Pareek V (2005) Light intensity distribution in a dual-lamp photo-reactor. Int J Chem Reactor Eng 3 (article A56)

  16. Duran JE, Taghipour F, Mohseni M (2010) Irradiance modelling in annular photo-reactors using the finite volume method. J Photochem Photobiol A 215:81–89

    Article  CAS  Google Scholar 

  17. Vasumathi KK, Premalatha M, Subramanian P (2013) Experimental studies on the effect of harvesting interval on yield of Scenedesmus arcuatus var. capitatus. Ecol Eng 58:13–16

    Article  Google Scholar 

  18. Sukhatme SP (1996) Solar energy: principles of thermal collection and storage, 2nd edn. Tata Macgraw Hill, New Delhi

    Google Scholar 

  19. Yun YS, Park JM (2001) Attenuation of monochromatic and polychromatic lights in Chlorella vulgaris suspensions. Appl Microbiol Biotechnol 55:765–770

    Article  CAS  Google Scholar 

  20. Huang Q, Liu T, Yang J, Yao L, Gao L (2011) Evaluation of Radiative transfer using finite volume method in cylindrical photoreactors. Chem Eng Sci 66(2011):3930–3940

    Article  CAS  Google Scholar 

  21. Lee E, Pruvost J, He X, Munipalli R, Pilon L (2014) Design Tool and Guidelines for Outdoor Photo-bioreactors. Chem Eng Sci 106:18–29

    Article  CAS  Google Scholar 

  22. ANSYS FLUENT 14.5, Theory Guide

Download references

Acknowledgments

We greatly acknowledge Department of Science and Technology (DST), Government of India, New Delhi for funding this project (DST/IS-STAC/CO2-SR-12/07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Premalatha M.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, R., Sahu, A., K. K, V. et al. Studies on light intensity distribution inside an open pond photo-bioreactor. Bioprocess Biosyst Eng 38, 1547–1557 (2015). https://doi.org/10.1007/s00449-015-1398-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1398-3

Keywords

Navigation