Skip to main content
Log in

Effects of molten-salt/ionic-liquid mixture on extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, lipid extraction from Aurantiochytrium sp. was performed using a molten-salt/ionic-liquid mixture. The total fatty acid content of Aurantiochytrium sp. was 478.8 mg/g cell, from which 145 mg/g cell (30.3 % of total fatty acids) of docosahexaenoic acid (DHA) was obtained. FeCl3·6H2O showed a high lipid extraction yield (207.9 mg/g cell), when compared with that of [Emim]OAc, which was only 118.1 mg/g cell; notably however, when FeCl3·6H2O was mixed with [Emim]OAc (5:1, w/w), the yield was increased to 478.6 mg/g cell. When lipid was extracted by the FeCl3·6H2O/[Emim]OAc mixture at a 5:1 (w/w) blending ratio under 90 °C, 30 min reaction conditions, the fatty acid content of the extracted lipid was a high purity 997.7 mg/g lipid, with most of the DHA having been extracted (30.2 % of total fatty acids). Overall, lipid extraction from Aurantiochytrium sp. was enhanced by the synergistic effects of the molten-salt/ionic-liquid mixture with different ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PUFA:

Polyunsaturated fatty acids

DHA:

Docosahexaenoic acid

[Emim]OAc:

1-ethyl-3-methyl imidazolium acetate

References

  1. Sanghvi A, Lo Y (2010) Present and potential industrial applications of macro-and microalgae. Recent Pat Food Nutr Agric 2(3):187–194

    Article  Google Scholar 

  2. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412

    Article  Google Scholar 

  3. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101(1):S75–S77

    Article  CAS  Google Scholar 

  4. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  5. Miao X, Wu Q (2003) Exploitation of biomass renewable energy sources of microalgae. Renew Energy 3:13–16

    Google Scholar 

  6. Shin H, Park J, Jung W, Cho H, Kim S (2011) Development of biorefinery process using microalgae. J Korean Soc Precis Eng 28:154–167

    Google Scholar 

  7. Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 356:328–334

    Article  CAS  Google Scholar 

  8. Tang S, Qin C, Wang H, Li S, Tian S (2011) Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J Supercrit Fluids 57(1):44–49

    Article  CAS  Google Scholar 

  9. Tapiero H, Ba GN, Couvreur P, Tew K (2002) Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother 56(5):215–222

    Article  CAS  Google Scholar 

  10. Innis SM (2008) Dietary omega 3 fatty acids and the developing brain. Brain Res 1237:35–43

    Article  CAS  Google Scholar 

  11. Sijtsma L, Swaaf MD (2004) Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. Appl Microbiol Biotechnol 64(2):146–153

    Article  CAS  Google Scholar 

  12. Shimizu K, Tariq M, Rebelo LP, Lopes JNC (2010) Binary mixtures of ionic liquids with a common ion revisited: a molecular dynamics simulation study. J Mol Liq 153(1):52–56

    Article  CAS  Google Scholar 

  13. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A Gen 373(1):1–56

    Article  CAS  Google Scholar 

  14. Castejón HJ, Lashock RJ (2012) Mixtures of ionic liquids with similar molar volumes form regular solutions and obey the cross-square rules for electrolyte mixtures. J Mol Liq 167:1–4

    Article  Google Scholar 

  15. EL-Mahdy GA, Abdeltawab AA, Al-Othman ZA, Al-Lohedan HA (2013) Influence of ionic liquid pre-immersion on the corrodibility of zinc in chloride containing environment. Int J Electrochem Sci 8:6829–6838

    CAS  Google Scholar 

  16. Khupse ND, Kurolikar SR, Kumar A (2010) Temperature dependent viscosity of mixtures of ionic liquids at different compositions. Indian J Chem 49(5):727

    Google Scholar 

  17. Marsh K, Boxall J, Lichtenthaler R (2004) Room temperature ionic liquids and their mixtures-a review. Fluid Phase Equilib 219(1):93–98

    Article  CAS  Google Scholar 

  18. Fujita K, Kobayashi D, Nakamura N, Ohno H (2013) Direct dissolution of wet and saliferous marine microalgae by polar ionic liquids without heating. Enzyme Microb Technol 52(3):199–202

    Article  CAS  Google Scholar 

  19. Lovejoy KS, Davis LE, McClellan LM, Lillo AM, Welsh JD, Schmidt EN, Sanders CK, Lou AJ, Fox DT, Koppisch AT (2013) Evaluation of ionic liquids on phototrophic microbes and their use in biofuel extraction and isolation. J Appl Psychol 25(4):973–981

    CAS  Google Scholar 

  20. Heinze T, Koschella A (2005) Solvents applied in the field of cellulose chemistry. a mini review. Polimeros 15(2):84–90

    Article  CAS  Google Scholar 

  21. Fischer S, Thümmler K, Pfeiffer K, Liebert T, Heinze T (2002) Evaluation of molten inorganic salt hydrates as reaction medium for the derivatization of cellulose. Cellulose 9(3):293–300

    Article  CAS  Google Scholar 

  22. Fischer S, Leipner H, Thümmler K, Brendler E, Peters J (2003) Inorganic molten salts as solvents for cellulose. Cellulose 10(3):227–236

    Article  CAS  Google Scholar 

  23. Choi SA, Lee JS, Oh YK, Jeong MJ, Kim SW, Park JY (2014) Lipid extraction from Chlorella vulgaris by molten-salt/ionic-liquid mixtures. Algal Res 3:44–48

    Article  Google Scholar 

  24. Lepage G, Roy C (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27(1):114–120

    CAS  Google Scholar 

  25. Choi SA, Oh YK, Jeong MJ, Kim SW, Lee JS, Park JY (2014) Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew Energy 65:169–174

    Article  CAS  Google Scholar 

  26. Hong WK, Yu A, Oh BR, Park JM, Kim CH, Sohn JH, Kondo A, Seo JW (2013) Large-scale production of microalgal lipids containing high levels of docosahexaenoic acid upon fermentation of Aurantiochytrium sp. KRS101. Food Nutr Sci 4:1–5

    Article  Google Scholar 

  27. Çetinkol ÖP, Dibble DC, Cheng G, Kent MS, Knierim B, Auer M, Wemmer DE, Pelton JG, Melnichenko YB, Ralph J (2010) Understanding the impact of ionic liquid pretreatment on eucalyptus. Biofuels 1(1):33–46

    Article  Google Scholar 

  28. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101(13):4900–4906

    Article  CAS  Google Scholar 

  29. Samayam IP, Schall CA (2010) Saccharification of ionic liquid pretreated biomass with commercial enzyme mixtures. Bioresour Technol 101(10):3561–3566

    Article  CAS  Google Scholar 

  30. Annat G, Forsyth M, MacFarlane DR (2012) Ionic liquid mixtures variations in physical properties and their origins in molecular structure. J Phys Chem B 116(28):8251–8258

    Article  CAS  Google Scholar 

  31. Niedermeyer H, Hallett JP, Villar-Garcia IJ, Hunt PA, Welton T (2012) Mixtures of ionic liquids. Chem Soc Rev 41(23):7780–7802

    Article  CAS  Google Scholar 

  32. Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32(3):175–201

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the New & Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20123010090010) and by the Advanced Biomass R&D Center (ABC) of Global Frontier Project funded by the Ministry of Education, Science and Technology (ABC-2012-053880).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Yeon Park or Ji-Won Yang.

Additional information

S.-A. Choi, J.-Y. Jung contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, SA., Jung, JY., Kim, K. et al. Effects of molten-salt/ionic-liquid mixture on extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Bioprocess Biosyst Eng 37, 2199–2204 (2014). https://doi.org/10.1007/s00449-014-1197-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1197-2

Keywords

Navigation