Skip to main content
Log in

Effect of temperature and hydraulic retention time on volatile fatty acid production based on bacterial community structure in anaerobic acidogenesis using swine wastewater

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

To investigate the effect of hydraulic retention time (HRT) and temperature (T) on bacterial community structure and volatile fatty acids (VFAs) production of an acidogenic process, and VFA production and changes in the bacterial community in three identical automated anaerobic continuously-stirred tank reactors were analyzed using response surface analysis (RSA) and nonmetric multidimensional scaling (NMDS). For RSA, 11 trials were conducted to find the combination of T and HRT under which VFA production was greatest; VFA production was affected more by HRT than by T. To identify the bacterial community structure in each trial, DNA from each experimental point of the RSA was analyzed using denaturating gradient gel electrophoresis (DGGE), and eight bacteria species were detected. NMDS was conducted on band intensities obtained using DGGE, and bacterial community structure was affected more by T than by HRT. Taken together, these results suggest that VFA production during acidogenesis was more dependent on the physicochemical properties of acidogens, such as their specific growth rate or contact time with of substrates, than on changes in the microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

COD:

Chemical oxygen demand

CSTR:

Continuously stirred tank reactors

DDW:

Deionized and distilled water

DGGE:

Denaturating gradient gel electrophoresis

HRT:

Hydraulic retention time

NMDS:

Nonmetric multidimensional scaling

OD:

Optical density

RSA:

Response surface analysis

RSM:

Response surface methodology

sCOD:

Soluble chemical oxygen demand

T:

Temperature

TS:

Total solids

TSS:

Total suspended solids

TVFA:

Total volatile fatty acids

UPGMA:

Unweighed pair group method with arithmetic

VFA:

Volatile fatty acid

VS:

Volatile solids

VSS:

Volatile suspended solids

References

  1. Beaudet R, Gagnon C, Bisaillon JG, Ishaque M (1990) Microbiological aspects of aerobic thermophilic treatment of swine waste. Appl Environ Microbiol 56:971–976

    CAS  Google Scholar 

  2. Speece RE (1996) Anaerobic Biotechnology for Industrial Wastewaters. Archae Press, Nashville

    Google Scholar 

  3. Ueno Y, Haruta S, Ishii M, Igarashi Y (2001) Changes in product formation and bacterial community by dilution rate on carbohydrate fermentation by methanogenic microflora in continuous flow stirred tank reactor. Appl Microbiol Biotechnol 57:65–73

    Article  CAS  Google Scholar 

  4. Hwang K, Song M, Kim W, Kim N, Hwang S (2010) Effects of prolonged starvation on methanogenic population dynamics in anaerobic digestion of swine wastewater. Bioresource Technol 101(Suppl 1):S2–S6

    Article  CAS  Google Scholar 

  5. Song M, Shin SG, Hwang S (2010) Methanogenic population dynamics assessed by real-time quantitative PCR in sludge granule in upflow anaerobic sludge blanket treating swine wastewater. Bioresource Technol 101:S23–S28

    Article  CAS  Google Scholar 

  6. Kim W, Lee S, Shin SG, Lee C, Hwang K, Hwang S (2010) Methanogenic community shift in anaerobic batch digesters treating swine wastewater. Water Res 44:4900–4907

    Article  CAS  Google Scholar 

  7. Stronach SM, Rudd T, Lester JN (1986) Anaerobic digestion processes in industrial wastewater treatment. Springer, New York

    Book  Google Scholar 

  8. Aitken MD, Mullennix RW (1992) Another look at thermophilic anaerobic digestion of wastewater sludge. Water Environ Res 64:915–919

    Article  CAS  Google Scholar 

  9. Yilmaz T, Yuceer A, Basibuyuk M (2008) A comparison of the performance of mesophilic and thermophilic anaerobic filters treating papermill wastewater. Bioresource Technol 99:156–163

    Article  CAS  Google Scholar 

  10. Curtis TP, Sloan WT (2004) Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr Opin Microb 7:221–226

    Article  Google Scholar 

  11. Kim W, Hwang K, Shin SG, Lee S, Hwang S (2010) Effect of high temperature on bacterial community dynamics in anaerobic acidogenesis using mesophilic sludge inoculum. Bioresource Technol 101(Suppl 1):S17–S22

    Article  CAS  Google Scholar 

  12. Curtis TP, Craine NG (1993) The comparison of the diversity of activated sludge plants. Water Sci Technol 137:71–78

    Google Scholar 

  13. Hwang S, Lee Y, Yang K (2001) Maximization of acetic acid production in partial acidogenesis of swine wastewater. Biotechnol Bioeng 75:521–529

    Article  CAS  Google Scholar 

  14. Yang K, Oh C, Hwang S (2004) Optimizing volatile fatty acid production in partial acidogenesis of swine wastewater. Water Sci Technol 50:169–176

    CAS  Google Scholar 

  15. Lee H, Song M, Yu Y, Hwang S (2003) Production of Ganoderma lucidum mycelium using cheese whey as an alternative substrate: response surface analysis and biokinetics. Biochem Eng J 15:93–99

    Article  CAS  Google Scholar 

  16. Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York

    Google Scholar 

  17. Hwang SH, Hansen CL, Stevens DK (1992) Biokinetics of an upflow anaerobic sludge blanket reactor treating whey permeate. Bioresource Technol 41:223–230

    Article  CAS  Google Scholar 

  18. Yu Y, Kim J, Hwang S (2006) Use of real-time PCR for group-specific quantification of aceticlastic methanogens in anaerobic processes: population dynamics and community structures. Biotechnol Bioeng 93:424–433

    Article  CAS  Google Scholar 

  19. Obata K, Segawa O, Yakabe M, Ishida Y, Kuroita T, Ikeda K, Kawakami B, Kawamura Y, Yohda M, Matsunaga T, Tajima H (2001) Development of a novel method for operating magnetic particles, magtration technology, and its use for automating nucleic acid purification. J Biosci Bioeng 91:500–503

    CAS  Google Scholar 

  20. Yu Y, Lee C, Hwang S (2005) Analysis of community structures in anaerobic processes using a quantitative real-time PCR method. Water Sci Technol 52:85–91

    CAS  Google Scholar 

  21. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  22. Kowalchuk GA, de Bruijn FJ, Head IM, Antoon D, Akkermans L, Van Elsas JD (2004) Molecular microbial ecology manual. Academic Publishers, Dordrecht

    Book  Google Scholar 

  23. Roy CS, Talbot G, Topp E, Beaulieu C, Palin MF, Masse DI (2009) Bacterial community dynamics in an anaerobic plug-flow type bioreactor treating swine manure. Water Res 43:21–32

    Article  CAS  Google Scholar 

  24. Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P (2002) Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643

    Article  CAS  Google Scholar 

  25. APHA-AWWA-WEF (2005) Standard Methods for the examination of water and wastewater, 21st Ed., American Public Health Association, Washinton, DC

  26. Takami H, Horikoshi K (1999) Reidentification of facultatively alkaliphilic Bacillus sp. C-125 to Bacillus halodurans. Biosci Biotech Biochem 63:943–945

    Article  CAS  Google Scholar 

  27. Patil S, Kumar M, Ball A (2010) Microbial community dynamics in anaerobic bioreactors and algal tanks treating piggery wastewater. Appl Microbiol Biotechnol 87:353–363

    Article  CAS  Google Scholar 

  28. Székely A, Sipos R, Berta B, Vajna B, Hajdú C, Márialigeti K (2009) DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence-aided T-RFLP profile of mature compost. Microb Ecol 57:522–533

    Article  Google Scholar 

  29. Shiratori H, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K (2008) Lutispora thermophila gen. nov., sp. nov., a thermophilic, spore-forming bacterium isolated from a thermophilic methanogenic bioreactor digesting municipal solid wastes. Int J Syst Evol Microbiol 58:964–969

    Article  Google Scholar 

  30. Alves MP, Rainey FA, Nobre MF, da Costa MS (2003) Thermomonas hydrothermalis sp. nov., a new slightly thermophilic gamma-proteobacterium isolated from a hot spring in central Portugal. Syst Appl Microbiol 26:70–75

    Article  CAS  Google Scholar 

  31. Busse HJ, Kämpfer P, Moore ERB, Nuutinen J, Tsitko IV, Denner EBM, Vauterin L, Valens M, Rosselló-Mora R, Salkinoja-Salonen MS (2002) Thermomonas haemolytica gen. nov., sp. nov., a γ-proteobacterium from kaolin slurry. Int J Syst Evol Micr 52:473–483

    CAS  Google Scholar 

  32. Lee YJ, Romanek CS, Mills GL, Davis RC, Whitman WB, Wiegel J (2006) Gracilibacter thermotolerans gen. nov., sp. nov., an anaerobic, thermotolerant bacterium from a constructed wetland receiving acid sulfate water. Int J Syst Evol Micr 56:2089–2093

    Article  CAS  Google Scholar 

  33. Lee C, Kim J, Hwang K, O’Flaherty V, Hwang S (2009) Quantitative analysis of methanogenic community dynamics in three anaerobic batch digesters treating different wastewaters. Water Res 43:157–165

    Article  CAS  Google Scholar 

  34. Gummadi S, Santhosh D (2010) Kinetics of growth and caffeine demethylase production of Pseudomonas sp. in bioreactor. J Ind Microbiol Biotechnol 37:901–908

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Advanced Biomass R&D Center (ABC) of Global Frontier Project funded by the Ministry of Education, Science and Technology (ABC-2010-0029728), and was also the New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government Ministry of Knowledge Economy (Grant no. 20103020090050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seokhwan Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, W., Shin, S.G., Lim, J. et al. Effect of temperature and hydraulic retention time on volatile fatty acid production based on bacterial community structure in anaerobic acidogenesis using swine wastewater. Bioprocess Biosyst Eng 36, 791–798 (2013). https://doi.org/10.1007/s00449-013-0905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0905-7

Keywords

Navigation