Skip to main content
Log in

Storable droplet interface lipid bilayers for cell-free ion channel studies

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

An artificially created lipid bilayer is an important platform in studying ion channels and engineered biosensor applications. However, a lipid bilayer created using conventional techniques is fragile and short-lived, and the measurement of ion channels requires expertise and laborious procedures, precluding practical applications. Here, we demonstrate a storable droplet lipid bilayer precursor frozen with ion channels, resulting in a droplet interface bilayer upon thawing. A small vial with an aqueous droplet in organic solution was flash frozen in −80 °C methanol immediately after an aqueous droplet was introduced into the organic solution and gravity draws the droplet down to the interface upon thawing. A lipid bilayer created along the interface using this method had giga-ohm resistance and typical specific capacitance values. The noise level of this system is favorably comparable to the conventional system. The subsequent incorporation of ion channels, alpha-hemolysin and gramicidin A, showed typical conductance values consistent with those in previous literatures. This novel system to create a lipid bilayer as a whole can be automated from its manufacture to use and indefinitely stored when frozen. As a result, ion channel measurements can be carried out in any place, increasing the accessibility of ion channel studies as well as a number of applications, such as biosensors, ion channel drug screening, and biophysical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HTS:

High-throughput screening

hERG:

Human ether-á-go-go related gene

DPhPC:

1,2-Diphytanoyl-sn-glycero-3-phosphocholine

References

  1. Moller C (2010) Keeping the rhythm: hERG and beyond in cardiovascular safety pharmacology. Expert Rev Clin Pharmacol 3(3):321–329

    Article  Google Scholar 

  2. Willumsen NJ, Bech M, Olesen SP, Jensen BS, Korsgaard MPG, Christophersen P (2003) High throughput electrophysiology: new perspectives for ion channel drug discovery. Recept Channels 9(1):3–12

    Article  CAS  Google Scholar 

  3. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 4th edn. McGraw-Hill, Health Professions Division, New York

    Google Scholar 

  4. Wang XB, Li M (2003) Automated electrophysiology: high throughput of art. Assay Drug Dev Technol 1(5):695–708

    Article  CAS  Google Scholar 

  5. Wood C, Williams C, Waldron GJ (2004) Patch clamping by numbers. Drug Discov Today 9(10):434–441

    Article  CAS  Google Scholar 

  6. Hanke W, Schlue WR (1993) Planar lipid bilayers: methods and applications. Academic Press, London

    Google Scholar 

  7. Miller C (1986) Ion channel reconstitution. Plenum Press, New York

    Google Scholar 

  8. Tien HT, Ottova-Leitmannova A (2003) Planar lipid bilayers (BLMs) and their appilcations. Membrane science and technology series, vol 7, 1st edn. Elsevier, Boston

    Google Scholar 

  9. Bayley H, Cremer PS (2001) Stochastic sensors inspired by biology. Nature 413(6852):226–230

    Article  CAS  Google Scholar 

  10. Cornell BA, Braach-Maksvytis VLB, King LG, Osman PDJ, Raguse B, Wieczorek L, Pace RJ (1997) A biosensor that uses ion-channel switches. Nature 387(6633):580–583

    Article  CAS  Google Scholar 

  11. Jeon TJ, Malmstadt N, Schmidt JJ (2006) Hydrogel-encapsulated lipid membranes. J Am Chem Soc 128(1):42–43

    Article  CAS  Google Scholar 

  12. Malmstadt N, Nash MA, Purnell RF, Schmidt JJ (2006) Automated formation of lipid-bilayer membranes in a microfluidic device. Nano Lett 6(9):1961–1965

    Article  CAS  Google Scholar 

  13. Suzuki H, Tabata KV, Noji H, Takeuchi S (2006) Highly reproducible method of planar lipid bilayer reconstitution in polymethyl methacrylate microfluidic chip. Langmuir 22(4):1937–1942

    Article  CAS  Google Scholar 

  14. Funakoshi K, Suzuki H, Takeuchi S (2006) Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal Chem 78(24):8169–8174

    Article  CAS  Google Scholar 

  15. Maglia G, Heron AJ, Hwang WL, Holden MA, Mikhailova E, Li Q, Cheley S, Bayley H (2009) Droplet networks with incorporated protein diodes show collective properties. Nat Nanotechnol 4(7):437–440

    Article  CAS  Google Scholar 

  16. Bayley H, Cronin B, Heron A, Holden MA, Hwang WL, Syeda R, Thompson J, Wallace M (2008) Droplet interface bilayers. Mol Biosyst 4(12):1191–1208

    Article  CAS  Google Scholar 

  17. Ide T, Kobayashi T, Hirano M (2008) Lipid bilayers at the gel interface for single ion channel recordings. Anal Chem 80(20):7792–7795

    Article  CAS  Google Scholar 

  18. Ide T, Takeuchi Y, Aoki T, Yanagida T (2002) Simultaneous optical and electrical recording of a single ion-channel. Jpn J Physiol 52:429–434

    Article  CAS  Google Scholar 

  19. Thompson JR, Heron AJ, Santoso Y, Wallace MI (2007) Enhanced stability and fluidity in droplet on hydrogel bilayers for measuring membrane protein diffusion. Nano Lett 7(12):3875–3878

    Article  CAS  Google Scholar 

  20. Stanley CE, Elvira KS, Niu XZ, Gee AD, Ces O, Edel JB, Demello AJ (2010) A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation. Chem Commun 46:1620–1622

    Article  CAS  Google Scholar 

  21. Creasy MA, Leo DJ (2010) Non-invasive measurement techniques for measuring properties of droplet interface bilayers. Smart Mater Struct 19:094016

    Article  Google Scholar 

  22. Poulos JL, Jeon TJ, Damoiseaux R, Gillespie EJ, Bradley KA, Schmidt JJ (2009) Ion channel and toxin measurement using a high throughput lipid membrane platform. Biosens Bioelectron 24(6):1806–1810

    Article  CAS  Google Scholar 

  23. Smith A (2002) Screening for drug discovery: the leading question. Nature 418(6896):453–459

    Google Scholar 

  24. Jeon TJ, Poulos JL, Schmidt JJ (2008) Long-term storable and shippable lipid bilayer membrane platform. Lab Chip 8(10):1742–1744

    Article  CAS  Google Scholar 

  25. Poulos JL, Jeon TJ, Schmidt JJ (2010) Automatable production of shippable bilayer chips by pin tool deposition for an ion channel measurement platform. Biotechnol J 5(5):511–514

    Article  CAS  Google Scholar 

  26. Carte AE (1961) Air bubbles in ice. Proc Phys Soc 77:757

    Article  Google Scholar 

  27. Janko K, Benz R (1977) Properties of lipid bilayer membranes made from lipids containing phytanic acid. Biochim Biophys Acta (BBA) Biomembr 470(1):8–16

    Article  CAS  Google Scholar 

  28. Bayley H (2006) Sequencing single molecules of DNA. Curr Opin Chem Biol 10(6):628–637

    Article  CAS  Google Scholar 

  29. Stankovic CJ, Heinemann SH, Delfino JM, Sigworth FJ, Schreiber SL (1989) Transmembrane channels based on tartaric acid-gramicidin A hybrids. Science 244(4906):813–817

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (#2009-0068624, #2009-0073070) and Inha University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Joon Jeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, SH., Choi, S., Kim, YR. et al. Storable droplet interface lipid bilayers for cell-free ion channel studies. Bioprocess Biosyst Eng 35, 241–246 (2012). https://doi.org/10.1007/s00449-011-0602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-011-0602-3

Keywords

Navigation