Skip to main content
Log in

The Ventotene Volcanic Ridge: a newly explored complex in the central Tyrrhenian Sea (Italy)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

New high-resolution geophysical data collected along the eastern margin of the Tyrrhenian back-arc basin, in the Pontine Islands area, reveal a ∼NW-SE elongated morphological high, the Ventotene Volcanic Ridge (VR), located on the northern edge of the Ventotene Basin. High-resolution multibeam bathymetry, combined with magnetic data, multi- and single-channel seismic profiles, and ROV dives, suggest that VR results from aggregation of a series of volcanic edifices. The summit of these volcanoes is flat and occurs at about 170 m water depth. Given their depths, we propose that flat morphologies were probably caused by surf erosion during Quaternary glacial sea level lowstands. Seismic stratigraphy together with magnetic data suggest that the volcanic activity in this area is older than 190–130 ka age and may be coeval with that of Ventotene Island (Middle Pleistocene). The submarine volcanoes, located 25 km north of Ventotene, are part of a ∼E-W regional volcanic alignment and extend the Pontine volcanism landward toward the Gaeta bay. Integration of structural data from multichannel seismic profiles in this sector of the eastern Tyrrhenian margin indicates that several normal and/or transtensional faults, striking WNW-ESE, NNW-SSE, and NE-SW, offset the basement and form alternating structural highs and depressions filled by thick, mostly undeformed, sedimentary units. Arc-related magmatism is widespread in the study area, where the VR is placed at the hangingwall of the west-directed Apennines subduction zone, which is undergoing tensional and transtensional tectonics. Bathymetric and topographic evidence shows that VR lies in between a major NE-SW trending escarpment east of Ponza and a NE-SW trending graben southwest of the Roccamonfina volcano, a NE-SW transfer zone that accommodate the extension along this segmented portion of the margin. This suggests that the interaction between NE-SW and NW-SE trending fault systems acts as a structural control on location of eruptive centers, given that main volcanic edifices develop along the NW-SE direction, compatible with the extensional setting of the Tyrrhenian basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Acocella V, Funiciello R (2002) Transverse structures and volcanic activity along the Tyrrhenian margin of central Italy. Boll Soc Geol Italiana 1:739–747

    Google Scholar 

  • Acocella V, Spinks K, Cole J, Nicol A (2003) Oblique back arc rifting of Taupo Volcanic Zone, New Zealand. Tectonics 4. doi:10.1029/2002TC001447

  • Acocella V, Funiciello R (2006) Transverse systems along the extensional Tyrrhenian margin of central Italy and their influence on volcanism. Tectonics 25. doi:10.1029/2005TC0018455

  • Aiello G, Cicchella AG, Di Fiore V, Marsella E (2011) New seismo-stratigraphic data of the Volturno Basin (northern Campania, Tyrrhenian margin, southern Italy): implications for tectono-stratigraphy of the Campania and Latium sedimentary basins. Ann Geophys 54. doi:10.4401/ag-4777

  • Aitken T, Mann P, Escalona A, Christeson GL (2011) Evolution of the Grenada and Tobago basins and implications for arc migration. Mar Petr Geol 28:235–258

    Article  Google Scholar 

  • Alessio M, Bella F, Improta S, Belluomini G, Calderoni G, Cortesi C, Turi B (1974) University of Rome Carbon-14 dates XII. Radiocarbon 16:358–367

    Article  Google Scholar 

  • Argnani A, Savelli S (1999) Cenozoic volcanism and tectonics in the southern Tyrrhenian Sea: space-time distribution and geodynamic significance. J Geodyn 27:409–432

    Article  Google Scholar 

  • Arnulf AF, Harding AJ, Kent GM, Carbotte SM, Canales JP, Nedimović MR (2014) Anatomy of an active submarine volcano. Geology 42:655–658

    Article  Google Scholar 

  • Bani P, Normier A, Bacri C, Allard P, Gunawan H, Hendrasto M, Surono M, Tsanev V (2015) First measurement of the volcanic gas output from Anak Krakatau, Indonesia. J Volcanol Geotherm Res 302:237–241

    Article  Google Scholar 

  • Bartole R (1984) Tectonic structure of the Latium-Campanian shelf (Tyrrhenian Sea). Boll Oceanografia Teorica e Applicata 2:197–230

    Google Scholar 

  • Beccaluva L et al. (1990) Geochemistry and mineralogy of volcanic rocks from ODP sites 650, 651, 655, and 654 in the Tyrrhenian Sea. In: Stewart NJ (ed) Proceedings of the Ocean Drilling Program, Scientific Result, U.S. Gov. Print. Off., 107:49–74

  • Bortoluzzi G, Ligi M, Romagnoli C, Cocchi L, Casalbore D, Sgroi T, Cuffaro M, Caratori Tontini F, D’Oriano F, Ferrante V, Remia A, Riminucci F (2010) Interactions between volcanism and tectonics in the Western Aeolian Sector, Southern Tyrrhenian Sea. Geophys J Int 183:64–78

    Article  Google Scholar 

  • Bosman A, Chiocci FL, Romagnoli C (2009) Morpho-structural setting of Stromboli Volcano revealed by high-resolution bathymetry and backscatter data of its submarine portions. Bull Volcanol 71:1007–1019

    Article  Google Scholar 

  • Bosman A, Casalbore D, Romagnoli C, Chiocci FL (2014) Formation of an “a” a lava delta: insights from time-lapse multibeam bathymetry and direct observations during the Stromboli 2007 eruption. Bull Volcanol 76. doi:10.1007/s00445-014-0838-2

  • Bosman A, Casalbore D, Anzidei M, Muccini F, Carmisciano C, Chiocci FL (2015) The first ultra-high resolution digital terrain model of the shallow-water sector around Lipari Island (Aeolian Islands, Italy). Ann Geophys 48. doi:10.4401/ag-6746

  • Bruno PG, de Alteriis G, Florio G (2002) The western undersea section of the Ischia volcanic complex (Italy, Tyrrhenian Sea) inferred by marine geophysical data. Geophys Res Lett 29. doi:10.1029/2001GL013904

  • Buttinelli M, Scrocca D, De Rita D, Quattrocchi F (2014) Modes of stepwise eastward migration of the northern Tyrrhenian Sea back-arc extension: evidences from the northern Latium offshore (Italy). Tectonics 32. doi:10.1002/2013TC003365

  • Cadoux A, Pinti DL, Aznar C, Chiesa S, Gillot P (2005) New chronological and geochemical constraints on the genesis and geological evolution of Ponza and Palmarola volcanic islands (Tyrrhenian Sea, Italy). Lithos 81:121–151

    Article  Google Scholar 

  • Calanchi N, Colantoni P, Rossi PL, Saitta M, Serri G (1989) The Strait of Sicily continental rift systems: physiography and petrochemistry of the submarine volcanic centres. Mar Geol 87:55–83

    Article  Google Scholar 

  • Calanchi N, Romagnoli C, Rossi LR (1995) Morphostructural features and some petrochemical data from the submerged area around Alicudi and Filicudi volcanic islands (Aeolian Arc, southern Tyrrhenian Sea). Mar Geol 123:215–238

    Article  Google Scholar 

  • Calò M, Parisi L (2014) Evidences of a lithospheric fault zone in the Sicily Channel continental rift (southern Italy) from instrumental seismicity data. Geophys J Int 199:219–225

    Article  Google Scholar 

  • Caratori Tontini F, Stefanelli P, Giori I, Faggioni O, Carmisciano C (2004) The revised aeromagnetic anomaly map of Italy. Ann Geophys 47:1547–1555

    Google Scholar 

  • Caratori Tontini F, Cocchi L, Carmisciano C (2009) Rapid 3-D forward model of potential fields with application to the Palinuro Seamount magnetic anomaly (southern Tyrrhenian Sea, Italy). J Geophys Res 116. doi:10.1029/2008JB005907

  • Caratori Tontini F, Cocchi L, Muccini F, Carmisciano C, Marani M, Bonatti E, Ligi M, Boschi E (2010) Potential-field modeling of collapse-prone submarine volcanoes in the southern Tyrrhenian Sea (Italy). Geophys Res Lett 37. doi:10.1029/2009GL041757

  • Carminati E, Lustrino M, Cuffaro M, Doglioni C (2010) Tectonics, magmatism and geodynamics of Italy: what we know and what we imagine. J Virt Expl 36:1–62

    Google Scholar 

  • Casalbore D, Bosman A, Martorelli E, Chiocci FL (2014a) Mass wasting features on the submarine flanks of Ventotene Volcanic Edifice (Tyrrhenian Sea, Italy). In: Krastel et al. (ed) Submarine mass movements and their consequences, Advances in Natural and Technological Hazards Research, Springer Int. Pub., 37:285–293

  • Casalbore D, Bosman A, Romagnoli C, Chiocci FL (2014b) Morphology of Lipari offshore (Southern Tyrrhenian Sea). J Maps. doi:10.1080/17445647.2014.980858

    Google Scholar 

  • Casalbore D, Romagnoli C, Pimentel A, Quartau R, Casas D, Ercilla G, Hipòlito R, Sposato A, Chiocci FL (2015) Volcanic, tectonic and mass-wasting processes of offshore Terceira Island (Azores) revealed by high-resolution seafloor mapping. Bull Volcanol 77. doi:10.1007/s00445-015-0905-3

  • Casalbore D, Falese F, Martorelli E, Romagnoli C, Chiocci FL (2016) Submarine depositional terraces in the Tyrrhenian Sea as a proxy for paleo-sea level reconstruction: problems and perspective. Quaternary Int, In press

  • Catalano S, Tortorici L, Viccaro M (2014) Regional tectonic control on large size explosive eruptions: insights into the green tuff ignimbrite unit of pantelleria. J Geodyn 73:23–33

    Article  Google Scholar 

  • Chiocci FL, Martorelli E (2015) Note illustrative e Carta Geologica in scala 1:50.000 delle aree maine del Foglio 413 Borgo Grappa, ISPRA. Carta Geologica d’Italia. (in press)

  • Chiocci FL, Orlando L (1996) Lowstand terraces on Tyrrhenian Sea steep continental slopes. Mar Geol 134:127–143

    Article  Google Scholar 

  • Chiocci FL, D’Angelo S, Romagnoli C, Ricci Lucchi F (2004) Terrazzi deposizionali sommersi lungo le coste italiane. In: Chiocci FL, D’Angelo S, Romagnoli C (eds) Atlante dei terrazzi deposizionali sommersi lungo le coste italiane, Memorie Descrittive della Carta Geologica d’Italia, 58:187–194

  • Clague D, Moore J, Reynolds J (2000) Formation of flat-topped volcanic cones in Hawaii. Bull Volcanol 62:214–233

    Article  Google Scholar 

  • Conte AM, Dolfi D (2002) Petrological and geochemical characteristics of Plio-Pleistocene Volcanics from Ponza Island (Tyrrhenian Sea, Italy). Mineral Petrol 74:75–94

    Article  Google Scholar 

  • Conte AM, Martorelli E, Calarco M, Sposato A, Perinelli C, Coltelli M, Chiocci FL (2014) The 1891 submarine eruption offshore Pantelleria Island (Sicily Channel, Italy): identification of the vent and characterization of products and eruptive style. Geochem Geophys Geosystems 15:2555–2574

    Article  Google Scholar 

  • Conte AM, Perinelli C, Bianchini G, Natale C, Martorelli E, Chiocchi FL (2016) New insights on the petrology of submarine volcanics from the western Pontine Archipelago (Tyrrhenian Sea, Italy). J Volcanol Geotherm Res, http://dx.doi.org/10.1016/j.jvolgeores.2016.08.005, in press

  • Conti A (2014) Processing and interpretation of new multichannel seismic profiles. The central-eastern margin of the Tyrrhenian basin, PhD Thesis, Sapienza Universit_ di Roma, Rome, Italy

  • Day S, Llanes P, Silver E, Hoffmann G, Ward S, Driscoll N (2015) Submarine landslide deposits of the historical lateral collapse of Ritter Island, Papua New Guinea. Mar Pet Geol 67:419–438

    Article  Google Scholar 

  • de Alteriis G, Fedi M, Passaro S, Siniscalchi A (2006) Magneto-seismic interpretation of subsurface volcanism in the Gaeta Gulf (Italy, Tyrrhenian Sea). Ann Geophys 49:929–943

    Google Scholar 

  • De Rita D, Funiciello R, Pantosti D, Salvini F, Sposato A, Velona M (1986) Geological and structural characteristics of the Pontine Islands (Italy). Mem Soc Geol It 36:55–67

    Google Scholar 

  • De Rita D, Giordano G, Cecili A (2001) A model for submarine rhyolite dome growth: Ponza Island (central Italy). J Volcanol Geotherm Res 187:221–239

    Article  Google Scholar 

  • Dekov VM, Savelli C (2004) Hydrothermal activity in the SE Tyrrhenian Sea: an overview of 30 years of research. Mar Geol 204:161–185

    Article  Google Scholar 

  • Doglioni C (1991) A proposal of kinematic modelling for W-dipping subductions—possible applications to the Tyrrhenian-Apennines system. Terra Nov. 3:423–434

  • Doglioni C, Merlini S, Cantarella G (1999) Foredeep geometries at the front of the Apennines in the Ionian Sea (Central Mediterranean). Earth Planet Sci Lett 168:243–254

    Article  Google Scholar 

  • Doglioni C, Innocenti F, Morellato C, Procaccianti D, Scrocca D (2004) On the Tyrrhenian Sea opening. Mem Descr Carta Geol d’Italia 44:147–164

    Google Scholar 

  • Ebinger C, Casey M (2001) Continental breakup in magmatic province: an Ethiopian example. Geology 29:527–530

    Article  Google Scholar 

  • Faccenna C, Mattei M, Funiciello R, Jolivet L (1997) Styles of back-arc extension in the Central Mediterranean. Terra Nov. 9:126–130

  • Fraccascia S, Chiocci FL, Scrocca D, Falese F (2013) Very high-resolution seismic stratigraphy of Pleistocene eustaticminima markers as a tool to reconstruct the tectonic evolution of the northern Latium shelf (Tyrrhenian Sea, Italy). Geology 41:375–378

    Article  Google Scholar 

  • Gruen G, Weis P, Driesner T, Heinrich CA, de Ronde CEJ (2014) Hydrodynamic modeling of magmatic-hydrothermal activity at submarine arc volcanoes, with implications for ore formation. Earth Planet Sci Lett 404:307–318

    Article  Google Scholar 

  • Hernández Molina FJ, Fernández-Salas LM, Lobo F, Somoza L, Díaz-del-Río V, Alverinho Dias JM (2000) The infralittoral prograding wedge: a new large-scale progradational sedimentary body in shallow marine environments. Geo-Mar Lett 20:109–117

    Article  Google Scholar 

  • Honsho C, Ura T, Asada A, Kim K, Nagahashi K (2015) High-resolution acoustic mapping to understand the ore deposit in the Bayonnaise knoll caldera, Izu-Ogasawara arc. J Geophys Res 120:2070–2092

    Article  Google Scholar 

  • Iezzi G, Caso C, Ventura G, Vallefuoco M, Behrens ACH, Mollo S, Paltrinieri D, Signanini P, Vetere F (2014) First documented deep submarine explosive eruptions at the Marsili seamount (Tyrrhenian Sea, Ttaly): a case of historical volcanism in the Mediterranean Sea. Gondwana Res 25:764–774

    Article  Google Scholar 

  • Ingrassia M, Martorelli E, Bosman A, Macelloni L, Sposato A, Chiocci FL (2015) The Zannone Giant Pockmark: first evidence of a giant complex seeping structure in shallow-water, central Mediterranean Sea, Italy. Mar Geol 363:38–51

    Article  Google Scholar 

  • Italiano F, De SA, Favali P, Rainone HL, Rusi S, Signanini P (2014) The Marsili Volcanic Seamount (Southern Tyrrhenian Sea): a potential offshore geothermal resource. Energies 7:4068–4086

    Article  Google Scholar 

  • Kastens KA et al (1988) ODP Leg 107 in the Tyrrhenian Sea: insights into passive margin and back-arc basin evolution. Geol Soc Am Bull 100:1140–1156

    Article  Google Scholar 

  • Lambeck K, Antonioli F, Anzidei M, Ferranti L, Leoni G, Scicchitano G, Silenzi S (2011) Sea level change along the Italian coast during the Holocene and projections for the future. Quaternary Int 232:250–257

    Article  Google Scholar 

  • Ligi M, Cocchi L, Bortoluzzi G, D’Oriano F, Muccini F, Caratori Tontini F, de Ronde CE, Carmisciano C (2014) Mapping of seafloor hydrothermally altered rocks using geophysical methods: Marsili and Palinuro seamounts, southern Tyrrhenian Sea. Econ Geol 109:103–2117

    Article  Google Scholar 

  • Loreto MF, Pepe F, De Ritis R, Ventura G, Ferrante V, Speranza F, Tomini I, Sacchi M (2015) Geophysical investigation of Pleistocene volcanism and tectonics offshore Capo Vaticano (Calabria, southeastern Tyrrhenian Sea). J Geodyn 99:71–86

  • Malinverno A, Ryan WBF (1986) Extension in the Tyrrhenian Sea and shortening in the Apennines as a result of arc migration driven by sinking of the lithosphere. Tectonics 5:227–245

    Article  Google Scholar 

  • Marani MP, Gamberi F (2004) Structural framework of the Tyrrhenian Sea unveiled by seafloor morphology. In: Marani MP, Gamberi F, Bonatti E (eds) From seafloor to deep mantle: architecture of the Tyrrhenian Backarc Basin, Mem Descr Carta Geol d’Italia, 44:97–108

  • Martorelli E, Falese F, Chiocci FL (2014) Overview of late quaternary continental shelf deposits off Italian peninsula. In: Chiocci FL, Chivas AAR (eds) Continental shelves of the world. Their evolution during the last Glacio-eustatic cycle. Geological Society Memoir 41:171–186

    Article  Google Scholar 

  • Mauffret A, Contrucci I, Brunet C (1999) Structural evolution of the Northern Tyrrhenian Sea from new seismic data. Mar Petrol Geol 16:381–407

    Article  Google Scholar 

  • Metrich N, Santacroce R, Savelli C (1988) Ventotene, a potassic Quaternary volcano in central Tyrrhenian Sea. Rend Soc It Min Petr 43:1195–1213

    Google Scholar 

  • Micallef A, Le Bas T, Huvenne AAI, Blondel P, Huhnerbach V, Deidun A (2012) A multi-method approach for benthic habitat mapping of shallow coastal areas with high-resolution multibeam data. Cont Shelf Res 1:4–26

    Google Scholar 

  • Milia A, Torrente MM (2000) Fold uplift and synkinematic stratal architectures in a region of active transtensional tectonics and volcanism, eastern Tyrrhenian Sea. Geol Soc Am Bull 112:1531–1542

    Article  Google Scholar 

  • Mitchell NC, Stretch R, Oppenheimer C, Kay D, Beier C (2012) Cone morphologies associated with shallow marine eruptions: east Pico Island, Azores. Bull Volcanol 74:2289–2300

    Article  Google Scholar 

  • Moeller S, Grevemeyer I, Ranero CR, Berndt C, Klaeschen D, Sallares V, Zitellini N, de Franco R (2013) Early-stage rifting of the northern Tyrrhenian Sea Basin: results from a combined wide-angle and multichannel seismic study. Geochem Geophys Geosyst 14:3032–3052

    Article  Google Scholar 

  • Muluneh AA, Cuffaro M, Doglioni C (2014) Left-lateral transtension along the Ethiopian Rift and constrains on the mantle-reference plate motions. Tectonophysics 632:21–31

    Article  Google Scholar 

  • Palano M, Ferranti L, Monaco C, Mattia M, Aloisi M, Bruno V, Cannavò F, Siligato G (2012) GPS velocity and strain fields in Sicily and southern Calabria, Italy: updated geodetic constraints on tectonic block interaction in the central Mediterranean. J Geophys Res 117. doi:10.1029/2012JB009254

  • Patacca E, Sartori R, Scandone P (1992) Tyrrhenian basin and Apenninic arcs: kinematic relations since Late Tortonian times. Mem Soc Geol Ital 45:425–451

    Google Scholar 

  • Peccerillo A (2005) Plio–Quaternary volcanism in Italy: petrology, geochemistry, geodynamics. Springer-Verlag, Berlin

    Google Scholar 

  • Perfit MR, Soule SA (2016) Submarine Lava Types. In: Harff J, Meschede M, Petersen S, Thiede J (eds) Encyclopedia of Marine Geosciences. Springer-Verlag Berlin Heidelberg, pp. 808–817

  • Quartau R, Hipòlito R, Romagnoli C, Casalbore D, Madeira J, Tempera F, Roque C, Chiocci FL (2014) The morphology of insular shelves as a key for understanding the geological evolution of volcanic islands: insights from Terceira Island (Azores). Geochem Geophys Geosys 15:1801–1826

    Article  Google Scholar 

  • Romagnoli C, Jakobsson SP (2015) Post-eruptive morphological evolution of island volcanoes: Surtsey as a modern case study. Geomorphology 250:384–396

    Article  Google Scholar 

  • Romagnoli C, Casalbore D, Bortoluzzi G, Bosman A, Chiocci FL, D’Oriano F, Gamberi F, Ligi M, Marani M (2013a) Bathy-morphological setting of the Aeolian Islands. In: F Lucchi and A Peccerillo and J Keller C A Tranne and P L Rossi (ed) The Aeolian Islands volcanoes. Mem. Geol. Soc. London 37:27–36

    Article  Google Scholar 

  • Romagnoli C, Casalbore D, Bosman A (2013b) Submarine structure of Vulcano volcano (Aeolian islands) revealed by high-resolution bathymetry and seismo-acoustic data. Mar Geol 48:30–45

    Article  Google Scholar 

  • Rosenbaum G, Lister GS (2004) Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines and the Sicilian Maghrebides. Tectonics 23. doi:10.1029/2003TC001518

  • Rotella MD, Wilson CJN, Barker SJ, Ian SC, Wright IC, Wysoczanski RJ (2015) Dynamics of deep submarine silicic explosive eruptions in the Kermadec arc, as reflected in pumice vesicularity textures. J Volcanol Geotherm Res 301:314–332

    Article  Google Scholar 

  • Scrocca D, Doglioni C, Innocenti F (2003) Constraints for an interpretation of the italian geodynamics: a review. In: Scrocca D, Doglioni C, Innocenti F, Manetti P, Mazzotti A, Bertelli L, Burbi L, Doffizi S (eds) CROP Atlas: seismic reflection profiles of the Italian crust, Mem. Descr. della Carta Geologica d’Italia, 62:15–46

  • Scrocca D, Carminati E, Doglioni C, Procaccianti D (2012) Tyrrhenian Sea. In: Roberts DG, Bally AW (eds) Regional Geology and Tectonics: Phanerozoic Passive Margins, Cratonic Basins and Global Tectonic Maps, Elsevier, 1C:473–485

  • Seebeck H, Nicol A, Stern T, Bibby HM, Stagpoole V (2010) Fault controls on the geometry and location of the Okataina Caldera, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 190:136–151

    Article  Google Scholar 

  • Serri G, Innocenti F, Manetti P (2001) Magmatism from Mesozoic to present: petrogenesis time-space distribution and geodynamic implications. In: Vai GB, Martini IP (eds) Anatomy of an Orogen: the Apennines and the adjacent Mediterranean Basins, Kluw. Acad. Pub., p 77–104

  • Sibrant ALR, Hildenbrand A, Marques FO, Weiss B, Boulesteix T, Hubscher C, Ludmann T, Costa ACC, Catalao JC (2015) Morpho-structural evolution of a volcanic island developed inside an active oceanic rift: S. Miguel Island (Terceira Rift, Azores). J Volcanol Geotherm Res 301:90–106

    Article  Google Scholar 

  • Torrente MM, Milia A (2013) Volcanism and faulting of the Campania margin (Eastern Tyrrhenian Sea, Italy): a three-dimensional visualization of a new volcanic field off Campi Flegrei. Bull Volcanol 75. doi:10.1007/s00445-013-0719-0

  • Trincardi F, Field ME (1991) Geometry, lateral variation, and preservation of downlapping regressive shelf deposits; eastern Tyrrhenian Sea margin, Italy. J Sedimentary Petrology 61:775–790

    Google Scholar 

  • Vignaroli G, Berardi G, Billi A, Kele S, Rossetti F, Soligo M, Bernasconi SM (2016) Tectonics, hydrothermalism, and paleoclimate recorded by Quaternary travertines and their spatio-temporal distribution in the Albegna basin, central Italy: insights on Tyrrhenian margin neotectonics. Lithosphere L507:1. doi:10.1130/L507.1

    Google Scholar 

  • Weiss BJ, Hubscher C, Wolf D, Ludmann T (2015) Submarine explosive volcanism in the southeastern Terceira Rift/S_o Miguel region (Azores). J Volcanol Geotherm Res 303:79–91

    Article  Google Scholar 

  • Yilmaz D (2001) Seismic data analysis: processing, inversion and interpretation of seismic data. Society of Exploration Geophysicists, series: Investigation in Geophysics 10, Tulsa, OK, ISBN 10: 1560800984

  • Yoon SH, Sohn YK, Chough SK (2014) Tectonic, sedimentary, and volcanic evolution of a back-arc basin in the East Sea (sea of Japan). Mar Geol 352:70–88

    Article  Google Scholar 

  • Zitellini N, Marani M, Borsetti AM (1984) Post-orogenic tectonic evolution of Palmarola and Ventotene basins (Pontine archipelago). Mem Soc Geol It 27:121–131

    Google Scholar 

  • Zitellini N, Trincardi F, Marani M, Fabbri A (1986) Neogene tectonics of the Northern Tyrrhenian Sea. Gior Geol 48:25–40

    Google Scholar 

Download references

Acknowledgments

During the first revision of this article, Giovanni Bortoluzzi passed away. Giovanni has been an essential mentor for us during these years. We are very grateful to him for his initiative to improve collaborative research among scientists involved in different topics of marine geology, and for the several cruises he organized and led in the Mediterranean Sea and the oceans. We will miss his curiosity, his generosity, and his enthusiasm for the sea, science, and exploration. The officers and the crew of the R/V Urania and R/V Astrea, and the scientific party of the TIR-10, MAGIC-IGAG 2012, GEOCAL 2014, and BOLLE 2014 surveys, are thanked for their cooperation during fieldwork. Prof. Marzia Bo from the University of Genova is warmly acknowledged for the use of R/V Astrea during her cruise ECOSAFIMED on August 2014. Discussions with A. Billi were much appreciated. The article strongly benefited from the reviews by J. D. L. White, V. Acocella, N. C. Mitchell, and G. de Alteriis. This research was partially supported by the Consiglio Nazionale delle Ricerche (CNR) of Italy under the sponsorship of Dipartimento Terra Ambiente (cruise TIR-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Cuffaro.

Additional information

Editorial responsibility: V. Acocella

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuffaro, M., Martorelli, E., Bosman, A. et al. The Ventotene Volcanic Ridge: a newly explored complex in the central Tyrrhenian Sea (Italy). Bull Volcanol 78, 86 (2016). https://doi.org/10.1007/s00445-016-1081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1081-9

Keywords

Navigation