Skip to main content

Advertisement

Log in

Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Although monogenetic volcanic fields pose hazards to major cities worldwide, their shallow magma feeders (<500 m depth) are rarely exposed and, therefore, poorly understood. Here, we investigate exposures of dikes and sills in the Hopi Buttes volcanic field, Arizona, to shed light on the nature of its magma feeder system. Shallow exposures reveal a transition zone between intrusion and eruption within 350 m of the syn-eruptive surface. Using a combination of field- and satellite-based observations, we have identified three types of shallow magma systems: (1) dike-dominated, (2) sill-dominated, and (3) interconnected dike-sill networks. Analysis of vent alignments using the pyroclastic massifs and other eruptive centers (e.g., maar-diatremes) shows a NW-SE trend, parallel to that of dikes in the region. We therefore infer that dikes fed many of the eruptions. Dikes are also observed in places transforming to transgressive (ramping) sills. Estimates of the observable volume of dikes (maximum volume of 1.90 × 106 m3) and sills (minimum volume of 8.47 × 105 m3) in this study reveal that sills at Hopi Buttes make up at least 30 % of the shallow intruded volume (∼2.75 × 106 m3 total) within 350 m of the paeosurface. We have also identified saucer-shaped sills, which are not traditionally associated with monogenetic volcanic fields. Our study demonstrates that shallow feeders in monogenetic fields can form geometrically complex networks, particularly those intruding poorly consolidated sedimentary rocks. We conclude that the Hopi Buttes eruptions were primarily fed by NW-SE-striking dikes. However, saucer-shaped sills also played an important role in modulating eruptions by transporting magma toward and away from eruptive conduits. Sill development could have been accompanied by surface uplifts on the order of decimeters. We infer that the characteristic feeder systems described here for the Hopi Buttes may underlie monogenetic fields elsewhere, particularly where magma intersects shallow, and often weak, sedimentary rocks. Results from this study support growing evidence of the important role of shallow sills in active monogenetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdelmalak MM, Mourgues R, Galland O, Bureau D (2012) Fracture mode analysis and related surface deformation during dyke intrusion: results from 2D experimental modelling. Earth Planet Sci Lett 359:93–105

    Article  Google Scholar 

  • Airoldi G, Muirhead JD, White JDL, Rowland J (2011) Emplacement of magma at shallow depth: insights from field relationships at Allan Hills, south Victoria Land, East Antarctica. Antarct Sci 23(3):281–296

    Article  Google Scholar 

  • Airoldi G, Muirhead JD, Zanella E, White JDL (2012) Emplacement process of Ferrar Dolerite sheets at Allan Hills (South Victoria Land, Antarctica) inferred from magnetic fabric. Geophys J Int 188(3):1046–1060

    Article  Google Scholar 

  • Albert H, Costa F, Martí J (2016) Years to weeks of seismic unrest and magmatic intrusions precede monogenetic eruptions. Geology. doi:10.1130/G37239.1

  • Anderson EM (1951) The dynamics of faulting and dyke formation with applications to Britain. Oliver and Boyd, Edinburgh, p 206

    Google Scholar 

  • Andrews RG, White JDL, Durig T, Zimanowski B (2014) Discrete blasts in granular material yield two-stage process of cavitation and granular fountaining. Geophys Res Lett 41(2):422–428

    Article  Google Scholar 

  • Annels A (1967) The geology of the Hornafjordur Region. In: University of London, p 278

  • Aoki Y, Takeo M, Ohminato T, Nagaoka Y, Nishida K (2013) Magma pathway and its structural controls of Asama Volcano, Japan. Geol Soc Lond Spec Publ 380:67–84

    Article  Google Scholar 

  • Biggs J, Chivers M, Hutchinson MC (2013) Surface deformation and stress interactions during the 2007–2010 sequence of earthquake, dyke intrusion and eruption in northern Tanzania. Geophys J Int 195(1):16–26

    Article  Google Scholar 

  • Billingsley GH, Block D, Redsteer MH (2013) Geologic map of the Winslow 30’ × 60’ quadrangle, Coconino and Navajo counties, Northern Arizona. US Geological Survey Scientific Investigations, Map 3247, pamphlet 25 pp, http://pubs.usgs.gov/sim/3247/

  • Bonaccorso A, Currenti G, Del Negro C (2013) Interaction of volcano-tectonic fault with magma storage, intrusion and flank instability: a thirty years study at Mt. Etna Volcano. J Volcanol Geotherm Res 251:127–136

    Article  Google Scholar 

  • Brown RJ, Valentine GA (2013) Physical characteristics of kimberlite and basaltic intraplate volcanism and implications of a biased kimberlite record. Geol Soc Am Bull 125(7–8):1224–1238

    Article  Google Scholar 

  • Buck WR, Einarsson P, Brandsdottir B (2006) Tectonic stress and magma chamber size as controls on dike propagation: constraints from the 1975–1984 Krafla rifting episode. Journal of Geophysical Research-Solid Earth 111(B12), DOI: 10.1029/2005jb003879

  • Burchardt S (2008) New insights into the mechanics of sill emplacement provided by field observations of the Njardvik Sill, Northeast Iceland. J Volcanol Geotherm Res 173(3–4):280–288

    Article  Google Scholar 

  • Cartwright J, Hansen DM (2006) Magma transport through the crust via interconnected sill complexes. Geology 34(11):929–932

    Article  Google Scholar 

  • Chadwick WW, Jonsson S, Geist DJ, Poland M, Johnson DJ, Batt S, Harpp KS, Ruiz A (2011) The May 2005 eruption of Fernandina Volcano, Galapagos: the first circumferential dike intrusion observed by GPS and InSAR. Bull Volcanol 73(6):679–697

    Article  Google Scholar 

  • Chevallier L, Woodford A (1999) Morpho-tectonics and mechanisms of emplacement of the dolerite rings and sills of the western Karoo, South Africa. S Afr J Geol 102:43–54

    Google Scholar 

  • Delaney PT, Gartner AE (1997) Physical processes of shallow mafic dike emplacement near the San Rafael Swell, Utah. Geol Soc Am Bull 109(9):1177–1192

    Article  Google Scholar 

  • Delaney PT, Pollard DD (1981) Deformation of host rocks and flow of magma during growth of minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico. US Geol Surv Prof Pap 1202:61

    Google Scholar 

  • Foshag WF, Gonzalez-Reyna J (1956) Birth and development of Paricutin Volcano. US Geol Surv Bull 965-D:355–489

    Google Scholar 

  • Francis EH (1982) Magma and sediment—I. Emplacement mechanism of late Carboniferous tholeiite sills in northern Britain. J Geol Soc 139:1–20

    Article  Google Scholar 

  • Friese N, Bense FA, Tanner DC, Gustafsson LE, Siegesmund S (2013) From feeder dykes to scoria cones: the tectonically controlled plumbing system of the Rauoholar volcanic chain, Northern Volcanic Zone, Iceland. Bull Volcanol 75(6), doi: 10.1007/s00445-013-0717-2

  • Galland O (2012) Experimental modelling of ground deformation associated with shallow magma intrusions. Earth Planet Sci Lett 317:145–156

    Article  Google Scholar 

  • Galland O, Scheibert J (2013) Analytical model of surface uplift above axisymmetric flat-lying magma intrusions: implications for sill emplacement and geodesy. J Volcanol Geotherm Res 253:114–130

    Article  Google Scholar 

  • Galland O, Planke S, Neumann ER, Malthe-Sorenssen A (2009) Experimental modelling of shallow magma emplacement: application to saucer-shaped intrusions. Earth Planet Sci Lett 277(3–4):373–383

    Article  Google Scholar 

  • Galland O, Burchardt S, Hallot E, Mourgues R, Bulois C (2014) Dynamics of dikes versus cone sheets in volcanic systems. J Geophys Res-Solid Earth 119(8):6178–6192

    Article  Google Scholar 

  • Goulty NR, Schofield N (2008) Implications of simple flexure theory for the formation of saucer-shaped sills. J Struct Geol 30(7):812–817

    Article  Google Scholar 

  • Gudmundsson A, Brenner SL (2004) How mechanical layering affects local stresses, unrests, and eruptions of volcanoes. Geophysical Research Letters 31(16), DOI: 10.1029/2004gl020083

  • Hansen DM, Cartwright J (2006) Saucer-shaped sill with lobate morphology revealed by 3D seismic data: implications for resolving a shallow-level sill emplacement mechanism. J Geol Soc 163:509–523

    Article  Google Scholar 

  • Hansen J, Jerram DA, McCaffrey K, Passey SR (2011) Early Cenozoic saucer-shaped sills of the Faroe Islands: an example of intrusive styles in basaltic lava piles. J Geol Soc 168:159–178

    Article  Google Scholar 

  • Harp AG, Valentine GA (2015) Shallow plumbing and eruptive processes of a scoria cone built on steep terrain. J Volcanol Geotherm Res 294:37–55

    Article  Google Scholar 

  • Hoek JD (1991) A classification of dyke-fracture geometry with examples from Precambrian dyke swarms in the Vestfold Hills, Antarctica. Geologische Rundscau 80:233–248

    Article  Google Scholar 

  • Hooten JA, Ort MH (2002) Peperite as a record of early-stage phreatomagmatic fragmentation processes: an example from the Hopi Buttes volcanic field, Navajo Nation, Arizona, USA. J Volcanol Geotherm Res 114(1–2):95–106

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. J Volcanol Geotherm Res 91(1):97–120

    Article  Google Scholar 

  • Johnson AM, Pollard DD (1973) Mechanics of growth of some laccolith intrusions in Henry Moutnains, Utah 1: field observations, Gilbert’s model, physical properties and flow of magma. Tectonophysics 18(3–4):261–309

    Article  Google Scholar 

  • Kattenhorn SA, Watkeys MK (1995) Blunt-ended dyke segments. J Struct Geol 17:1532–1542

    Article  Google Scholar 

  • Kavanagh JL, Menand T, Sparks RSJ (2006) An experimental investigation of sill formation and propagation in layered elastic media. Earth Planet Sci Lett 245(3–4):799–813

    Article  Google Scholar 

  • Kavanagh JL, Boutelier D, Cruden AR (2015) The mechanics of sill inception, propagation and growth: experimental evidence for rapid reduction in magmatic overpressure. Earth Planet Sci Lett 421:117–128

    Article  Google Scholar 

  • Keating GN, Valentine GA, Krier DJ, Perry FV (2008) Shallow plumbing systems for small-volume basaltic volcanoes. Bull Volcanol 70(5):563–582

    Article  Google Scholar 

  • Kereszturi G, Németh K (2012) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in volcanology—new advances in understanding volcanic systems. InTech, Rijeka, pp 3–89

    Google Scholar 

  • Kiyosugi K, Connor CB, Wetmore PH, Ferwerda BP, Germa AM, Connor LJ, Hintz AR (2012) Relationship between dike and volcanic conduit distribution in a highly eroded monogenetic volcanic field: San Rafael, Utah, USA. Geology 40(8):695–698

    Article  Google Scholar 

  • Klausen MB (2004) Geometry and mode of emplacement of the Thverartindur cone sheet swarm, SE Iceland. J Volcanol Geotherm Res 138(3–4):185–204

    Article  Google Scholar 

  • Le Corvec N, Spörli BK, Rowland JV, Lindsay J (2013) Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth-Sci Rev 124:96–114

    Article  Google Scholar 

  • Lefebvre NS (2013) Volcanology of maar-diatreme volcanic vent complexes, Hopi Buttes Volcanic Field, Navajo Nation, Arizona, USA. PhD thesis, University of Otago, Dunedin, p 269

  • Lefebvre NS, White JDL, Kjarsgaard BA (2012) Spatter-dike reveals subterranean magma diversions: consequences for small multivent basaltic eruptions. Geology 40(5):423–426

    Article  Google Scholar 

  • Lefebvre NS, White JDL, Kjarsgaardb BA (2016) Arrested diatreme development: Standing Rocks East, Hopi Buttes, Navajo Nation, USA. J Volcanol Geotherm Res 310:186–208. doi:10.1016/j.jvolgeores.2015.12.007

    Article  Google Scholar 

  • Magee C, Briggs F, Jackson CAL (2013a) Lithological controls on igneous intrusion-induced ground deformation. J Geol Soc 170(6):853–856

    Article  Google Scholar 

  • Magee C, Hunt-Stewart E, Jackson CAL (2013b) Volcano growth mechanisms and the role of sub-volcanic intrusions: insights from 2D seismic reflection data. Earth Planet Sci Lett 373:41–53

    Article  Google Scholar 

  • Magee C, Jackson CA-L, Schofield N (2014) Diachronous sub-volcanic intrusion along deep-water margins: insights from the Irish Rockall Basin. Basin Res 26:85–105

    Article  Google Scholar 

  • Malthe-Sørensson A, Planke S, Svensen H, Jamtveit B (2004) Formation of saucer-shaped sills. In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geological Society [London] Special Publication, pp 215–227

  • Marshak S, Karlstrom K, Timmons JM (2000) Inversion of Proterozoic extensional faults: an explanation for the pattern of Laramide and Ancestral Rockies intracratonic deformation, United States. Geology 28(8):735–738

    Article  Google Scholar 

  • Mastin LG, Christiansen RL, Thornber C, Lowenstern J, Beeson M (2004) What makes hydromagmatic eruptions violent? Some insights from the Keanakako’i Ash, Kilauea Volcano, Hawai’i. J Volcanol Geotherm Res 137(1–3):15–31

    Article  Google Scholar 

  • Mathieu L, de Vries BV, Holohan EP, Troll VR (2008) Dykes, cups, saucers and sills: analogue experiments on magma intrusion into brittle rocks. Earth Planet Sci Lett 271(1–4):1–13

    Article  Google Scholar 

  • Mathieu L, Burchardt S, Troll VR, Krumbholz M, Delcamp A (2015) Geological constraints on the dynamic emplacement of cone-sheets—the Ardnamurchan cone-sheet swarm, NW Scotland. J Struct Geol 80:133–141

    Article  Google Scholar 

  • McGee LE, Millet MA, Smith IEM, Nemeth K, Lindsay JM (2012) The inception and progression of melting in a monogenetic eruption: Motukorea Volcano, the Auckland Volcanic Field, New Zealand. Lithos 155:360–374

    Article  Google Scholar 

  • Mourgues R, Bureau D, Bodet L, Gay A, Gressier JB (2012) Formation of conical fractures in sedimentary basins: experiments involving pore fluids and implications for sandstone intrusion mechanisms. Earth Planet Sci Lett 313:67–78

    Article  Google Scholar 

  • Muirhead JD, Airoldi G, Rowland JV, White JDL (2012) Interconnected sills and inclined sheet intrusions control shallow magma transport in the Ferrar large igneous province, Antarctica. Geol Soc Am Bull 124(1–2):162–180

    Article  Google Scholar 

  • Muirhead JD, Airoldi G, White JDL, Rowland JV (2014) Cracking the lid: sill-fed dikes are the likely feeders of flood basalt eruptions. Earth Planet Sci Lett 406:187–197

    Article  Google Scholar 

  • Muirhead JD, Kattenhorn SA, Le Corvec N (2015) Varying styles of magmatic strain accommodation in the East African Rift. Geochemistry, Geophysics, Geosystems 16, DOI: 10.1002/2015GC005918

  • Nemeth K, Martin U (2007) Shallow sill and dyke complex in western Hungary as a possible feeding system of phreatomagmatic volcanoes in “soft-rock” environment. J Volcanol Geotherm Res 159(1–3):138–152

    Article  Google Scholar 

  • Ort MH, Carrasco-Nunez G (2009) Lateral vent migration during phreatomagmatic and magmatic eruptions at Tecuitlapa Maar, east-central Mexico. J Volcanol Geotherm Res 181(1–2):67–77

    Article  Google Scholar 

  • Pasquarè F, Tibaldi A (2007) Structure of a sheet-laccolith system revealing the interplay between tectonic and magma stresses at Stardalur Volcano, Iceland. J Volcanol Geotherm Res 161(1–2):131–150

    Article  Google Scholar 

  • Paulsen TS, Wilson TJ (2010) New criteria for systematic mapping and reliability assessment of monogenetic volcanic vent alignments and elongate volcanic vents for crustal stress analyses. Tectonophysics 482(1–4):16–28

    Article  Google Scholar 

  • Pollard DD, Muller OH, Dockstader DR (1975) The form and growth of fingered sheet intrusions. Geol Soc Am Bull 86:351–363

    Article  Google Scholar 

  • Polteau S, Ferre EC, Planke S, Neumann ER, Chevallier L (2008) How are saucer-shaped sills emplaced? Constraints from the Golden Valley Sill, South Africa. Journal of Geophysical Research-Solid Earth 113(B12), DOI: 10.1029/2008jb005620

  • Re G, White JDL, Ort MH (2015) Dikes, sills, and stress-regime evolution during emplacement of the Jagged Rocks Complex, Hopi Buttes Volcanic Field, Navajo Nation, USA. J Volcanol Geotherm Res 295:65–79

    Article  Google Scholar 

  • Reches Z, Fink J (1988) The mechanisms of intrusion of the Inyo Dike, Long Valley Caldera, California. J Geophys Res Solid Earth Planets 93(B5):4321–4334

    Article  Google Scholar 

  • Richardson JA, Connor CB, Wetmore PH, Connor LJ, Gallant EA (2015) Role of sills in the development of volcanic fields: insights from lidar mapping surveys of the San Rafael Swell, Utah. Geology 43:1023–1026

    Article  Google Scholar 

  • Rivalta E, Taisne B, Bunger AP, Katz RF (2015) A review of mechanical models of dike propagation: Schools of thought, results and future directions. Tectonophysics 638:1–42

  • Ross PS, White JDL (2006) Debris jets in continental phreatomagmatic volcanoes: a field study of their subterranean deposits in the Coombs Hills vent complex, Antarctica. J Volcanol Geotherm Res 149(1–2):62–84

    Article  Google Scholar 

  • Ross PS, White JDL (2012) Quantification of vesicle characteristics in some diatreme-filling deposits, and the explosivity levels of magma-water interactions within diatremes. J Volcanol Geotherm Res 245:55–67

    Article  Google Scholar 

  • Rotella MD, Wilson CJN, Barker SJ, Cashman KV, Houghton BF, Wright IC (2014) Bubble development in explosive silicic eruptions: insights from pyroclast vesicularity textures from Raoul volcano (Kermadec arc). Bull Volcanol 76(8), doi: 10.1007/s00445-014-0826-6

  • Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23:287–336

    Article  Google Scholar 

  • Schofield N, Stevenson C, Reston T (2010) Magma fingers and host rock fluidization in the emplacement of sills. Geology 38(1):63–66

    Article  Google Scholar 

  • Schofield N, Heaton L, Holford SP, Archer SG, Jackson CAL, Jolley DW (2012a) Seismic imaging of ‘broken bridges’: linking seismic to outcrop-scale investigations of intrusive magma lobes. J Geol Soc 169(4):421–426

    Article  Google Scholar 

  • Schofield NJ, Brown DJ, Magee C, Stevenson CT (2012b) Sill morphology and comparison of brittle and non-brittle emplacement mechanisms. J Geol Soc 169(2):127–141

    Article  Google Scholar 

  • Segall P (2013) Volcano deformation and eruption forecasting. Remote Sens Volcanoes Volcanic Processes: Integrating Observation and Modelling 380:85–106

    Google Scholar 

  • Sigmundsson F, Hooper A, Hreinsdottir S, Vogfjord KS, Ofeigsson BG, Heimisson ER, Dumont S, Parks M, Spaans K, Gudmundsson GB, Drouin V, Arnadottir T, Jonsdottir K, Gudmundsson MT, Hognadottir T, Fridriksdottir HM, Hensch M, Einarsson P, Magnusson E, Samsonov S, Brandsdottir B, White RS, Agustsdottir T, Greenfield T, Green RG, Hjartardottir AR, Pedersen R, Bennett RA, Geirsson H, La Femina PC, Bjornsson H, Palsson F, Sturkell E, Bean CJ, Mollhoff M, Braiden AK, Eibl EPS (2015) Segmented lateral dyke growth in a rifting event at Bardarbunga volcanic system, Iceland. Nature 517(7533):191–195

    Article  Google Scholar 

  • Skilling IP, White JDL, McPhie J (2002) Peperite: a review of magma-sediment mingling. J Volcanol Geotherm Res 114(1–2):1–17

    Article  Google Scholar 

  • Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37

    Article  Google Scholar 

  • Sparks RSJ, Biggs J, Neuberg JW (2012) Monitoring Volcanoes. Science 335(6074):1310–1311

    Article  Google Scholar 

  • Thomson K (2007) Determining magma flow in sills, dykes and laccoliths and their implications for sill emplacement. Bull Volcanol 70:183–201

    Article  Google Scholar 

  • Thomson K, Hutton D (2004) Geometry and growth of sill complexes: insights using 3D seismic from the North Rockall Trough. Bull Volcanol 66:364–375

    Article  Google Scholar 

  • Thomson K, Schofield N (2008) Lithological and structural controls on the emplacement and morphology of sills in sedimentary basins. In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems. Geological Society [London] Special Publications 302, pp 31–44

  • Valentine GA, Krogh, KEC (2006) Emplacement of shallow dikes and sills beneath a small basaltic volcanic center – The role of pre-existing structure (Paiute Ridge, southern Nevada, USA). Earth Planet Sci Lett 246:217–230

  • Valentine GA, Cortés JA (2013) Time and space variations in magmatic and phreatomagmatic eruptive processes at Easy Chair (Lunar Crater Volcanic Field, Nevada, USA). Bull Volcanol 75(9). doi: 10.1007/s00445-013-0752-z

  • Wadge G, Burt L (2011) Stress field control of eruption dynamics at a rift volcano: Nyamuragira, DR Congo. J Volcanol Geotherm Res 207(1–2):1–15

    Article  Google Scholar 

  • Walker RJ (2016) Controls on transgressive sill growth. Geology. doi:10.1130/G37144.1

    Google Scholar 

  • White JDL (1990) Depositional architecture of a maar-pitted playa—sedimentation in the Hopi Buttes volcanic field, northeastern Arizona, USA. Sediment Geol 67(1–2):55–84

    Article  Google Scholar 

  • White JDL (1991) Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA. Bull Volcanol 53(4):239–258

    Article  Google Scholar 

  • White JDL (1992) Pliocene subaqueous fans and gilbert-type deltas in maar crater lakes, Hopi Buttes, Navajo Nation (Arizona), USA. Sedimentology 39(5):931–946

    Article  Google Scholar 

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1–4):1–29

    Article  Google Scholar 

  • Wood CA (1980) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7(3–4):387–413

    Article  Google Scholar 

  • Wright TJ, Sigmundsson F, Pagli C, Belachew M, Hamling IJ, Brandsdottir B, Keir D, Pedersen R, Ayele A, Ebinger C, Einarsson P, Lewi E, Calais E (2012) Geophysical constraints on the dynamics of spreading centres from rifting episodes on land. Nat Geosci 5(4):242–250

    Article  Google Scholar 

Download references

Acknowledgments

We thank the local Navajo people and the Prosser family for kindly allowing us access to the field areas described in this study. Support for JDM was provided by the New Zealand Fulbright-Ministry of Science and Innovation Award. Ramon Arrowsmith and Amanda Clarke are thanked for hosting JDM at Arizona State University during field work. Nicolas Le Corvec kindly provided his MATLAB script and statistical data on monogenetic cone fields. AVE acknowledges NSF Postdoctoral Fellowship EAR1250029 and a U.S. Geological Survey Mendenhall Fellowship. We thank reviewers Mike Poland, Steffi Burchardt, and Nicolas Le Corvec, and editor Valerio Acocella, who provided insightful comments that improved the manuscript. Field work in the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geological investigations on the Navajo Nation must first apply for and receive a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, and telephone number (928) 871–6587.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Muirhead.

Additional information

Editorial responsibility: V. Acocella, acting Executive Editor

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 526 kb)

ESM 2

(XLSX 39.9 kb)

ESM 3

(XLSX 57.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muirhead, J.D., Van Eaton, A.R., Re, G. et al. Monogenetic volcanoes fed by interconnected dikes and sills in the Hopi Buttes volcanic field, Navajo Nation, USA. Bull Volcanol 78, 11 (2016). https://doi.org/10.1007/s00445-016-1005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1005-8

Keywords

Navigation