Skip to main content
Log in

Curie isotherm depth from aeromagnetic data constraining shallow heat source depths in the central Aeolian Ridge (Southern Tyrrhenian Sea, Italy)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The Salina, Lipari, and Vulcano volcanic ridge and the surrounding sea sectors (Aeolian Archipelago, Southern Tyrrhenian Sea, Italy) are characterized by vents responsible for a recent (<40 ka—1889/1890 AD) effusive and explosive subareal activity and repeated, 56 to 7 ka in age, submarine explosive eruptions from source areas located between Lipari and Vulcano. A spectral depth estimation of the magnetic bottom using a fractal method on aeromagnetic data from Vulcano, Lipari, and Salina volcanic ridge allows us to constrain the Curie isotherm depth. The elevated portion of the isotherm is between 2 and 3 km below Salina and Vulcano and about 1 km below Lipari. The Curie depth results in the context of other geological and geophysical evidence suggest that the rise of the Curie isotherm is mainly due to the occurrence of shallow heat sources such as magma ponds and associated hydrothermal systems. The short-wavelength magnetic anomaly field reflects magnetic contrasts from highly magnetized volcanic bodies, low-magnetization sediments, and hydrothermally altered rocks. Borehole temperature data verify the Curie temperature derived from the magnetic methods on the island of Vulcano. We conclude that the whole Vulcano, Lipari, and Salina volcanic ridge is active and should be monitored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aydın I, Karat HI, Koçak A (2005) Curie-point depth map of Turkey. Geophys J Intern 162:633–640

    Article  Google Scholar 

  • Bansal AR, Gabriel G, Dimri VP, Krawczyk CM (2011) Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany. Geophysics 76:L11–L22

    Article  Google Scholar 

  • Baranov V, Naudy H (1964) Numerical calculation of the formula of reduction to the magnetic pole. Geophysics 29:67–79

    Article  Google Scholar 

  • Barberi F, Gandino A, Gioncada A, La Torre P, Sbrana A, Zenucchini C (1994) The deep structure of the Eolian arc (Filicudi–Panarea–Vulcano sector) in light of gravity, magnetic and volcanological data. J Volcanol Geotherm Res 61:189–206

    Article  Google Scholar 

  • Blanco Montenegro I, De Ritis R, Chiappini M (2007) Imaging and modelling the subsurface structure of volcanic calderas with high-resolution aeromagnetic data at Vulcano (Aeolian Islands, Italy). Bull Volcanol 69(6):643–659. doi:10.1007/s00445-006-0100-7

    Article  Google Scholar 

  • Bouligand C, Glen JMG, Blakely RJ (2009) Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization. J Geophys Res 114:B11104. doi:10.1029/2009JB006494

    Article  Google Scholar 

  • Boyce A (2007) Fluids in early stage hydrothermal alteration of high-sulfidation epithermal systems: a view from the Vulcano active hydrothermal system (Aeolian Island, Italy). J Volcanol Geotherm Res 166(2):76–90

    Article  Google Scholar 

  • Bruno PP, Paoletti V, Grimaldi M, Rapolla A (2000) Geophysical exploration for geothermal low enthalpy resources in Lipari Island, Italy. J Volcanol Geotherm Res 98:173–188

    Article  Google Scholar 

  • Chiappini M, Ferraccioli F, Bozzo E, Damaske D (2002) Regional compilation and analysis of aeromagnetic anomalies for the Transantarctic Mountains–Ross Sea sector of the Antarctic. Tectonophysics 347:121–137

    Article  Google Scholar 

  • Castello B, Selvaggi G, Chiarabba C, Amato A (2005) Catalogo della sismicità Italiana—CSI 10, 1981–2002, Cent Naz Terremoti, Ist Naz di Geofis e. Vulcanol, Rome

    Google Scholar 

  • Cicchino AMP, Zanella E, De Astis G, Lanza R, Lucchi F, Tranne CA, Airoldi G, Mana S (2011) Rock magnetism and compositional investigation of Brown Tuffs deposits at Lipari and Vulcano (Aeolian Islands—Italy). J Volcanol Geotherm Res 208:23–38. doi:10.1016/jjvolgeores201108007

    Article  Google Scholar 

  • De Astis G, Ventura G, Vilardo G (2003) Geodynamic significance of the Aeolian volcanism (Southern Tyrrhenian Sea, Italy) in light of structural, seismological and geochemical data. Tectonics 22:1040. doi:10.1029/2003TC001506

    Article  Google Scholar 

  • De Ritis R, Blanco-Montenegro I, Ventura G, Chiappini M (2005) Aeromagnetic data provide new insights on the volcanism and tectonics of Vulcano Island and offshore areas (southern Tyrrhenian Sea, Italy). Geophys Res Lett 32:L15305. doi:10.1029/2005GL023465

    Article  Google Scholar 

  • De Ritis R, Ventura G, Chiappini M (2007) Aeromagnetic anomalies reveal hidden tectonic and volcanic structures in the central sector of the Aeolian Islands, southern Tyrrhenian Sea, Italy. J Geophys Res 112:B10. doi:10.1029/2006JB004639

    Article  Google Scholar 

  • De Rosa R, Guillou H, Mazzuoli R, Ventura G (2003a) New unspiked K–Ar ages of volcanic rocks of the central and western sector of the Aeolian Islands: reconstruction of the volcanic stages. J Volcanol Geotherm Res 120:161–178

    Article  Google Scholar 

  • De Rosa R, Donato P, Gioncada A, Masetti M, Santacroce R (2003b) The Monte Guardia eruption (Lipari, Aeolian Islands): an example of reversely zoned magma mixing sequence. Bull Volcanol 65:530–543

    Article  Google Scholar 

  • Di Martino C, Frezzotti M, Lucchi F, Peccerillo A, Tranne C, Diamond LW (2010) Magma storage and ascent at Lipari Island (Aeolian Archipelago, Southern Italy) at 223–81 ka: the role of crustal processes and tectonic influence. Bull Volcanol 72(9):1061–1076

    Article  Google Scholar 

  • Donato P, Behrens H, De Rosa R, Holtz F, Parat F (2006) Crystallization conditions in Upper Pollara (Salina Island, Southern Tyrrhenian Sea) magma chamber. Mineral Petrol 86:89–108

    Article  Google Scholar 

  • Faraone D, Silvano A, Verdiani G (1986) The monzogabbroic intrusion in the island of Vulcano, Aeolian Archipelago, Italy. Bull Volcanol 48:299–307

    Article  Google Scholar 

  • Fedi M, Quarta T, de Santis A (1997) Inherent power-law behavior of magnetic field power spectra from a Spector and Grant ensemble. Geophysics 62:1143–1150

    Article  Google Scholar 

  • Ferrucci F, Gaudiosi G, Milano G, Nercessian A, Vilardo G, Luongo G (1991) Seismological exploration of Vulcano (Aeolian Islands, Southern Tyrrhenian Sea): case history. Acta Vulcanol 1:143–152

    Google Scholar 

  • Finn C, Sisson TW, Deszcz-Pan M (2001) Aerogeophysical measurements of collapse–prone hydrothermally altered zones at Mount Rainer volcano. Nature 409:600–603

    Article  Google Scholar 

  • Frezzotti ML, Peccerillo A, Bonelli R (2003) Magma ascent rates and depths of magma reservoirs beneath the Aeolian volcanic arc (Italy): inferences from fluid and melt inclusions in crustal xenoliths. In: Bodnar B, De Vivo B (eds) Melt inclusions in volcanic systems. Elsevier, Amsterdam, pp 185–206

    Chapter  Google Scholar 

  • Gambino S, Milluzzo V, Scaltrito A, Scarfì L (2012) Relocation and focal mechanisms of earthquakes in the south-central sector of the Aeolian Archipelago: new structural and volcanological insights. Tectonophysics 524/525:108–115. doi:10.1016/jtecto201112024

    Article  Google Scholar 

  • Granieri D, Carapezza ML, Chiodini G (2006) Correlated increase in CO2 fumarolic content and diffuse emission from La Fossa crater (Vulcano, Italy): evidence of volcanic unrest or increasing gas release from a stationary deep magma body? Geophys Res Lett 33:L13316. doi:10.1029/2006GL026460

    Article  Google Scholar 

  • Gvirtzman Z, Nur A (2001) Residual topography, lithospheric thickness, and sunken slabs in the central Mediterranean. Earth Planet Sci Lett 187:117–130

    Article  Google Scholar 

  • Lucchi F, Tranne CA, De Astis G, Keller J, Losito R, Morche W (2008) Stratigraphy and significance of Brown Tuffs of the Aeolian Islands (southern Italy). J Volcanol Geotherm Res 117:49–70

    Article  Google Scholar 

  • Macmillan S, Maus D (2005) International geomagnetic reference field—the tenth generation. Earth Planets Space 57:1135–1140

    Google Scholar 

  • Maus S, Gordon D, Fairhead D (1997) Curie-temperature depth estimation using a self-similar magnetization model. Geophys J Intern 129:163–168. doi:10.1111/j1365-246X1997tb00945x

    Article  Google Scholar 

  • Maus S, Dimri VP (1996) Depth estimation from the scaling power spectrum of potential fields? Geophys J Int 124:113–120

    Article  Google Scholar 

  • Mazzuoli R, Tortorici L, Ventura G (1995) Oblique rifting in Salina, Lipari and Vulcano islands (Aeolian Islands, southern Italy). Terra Nova 7:444–452

    Article  Google Scholar 

  • Nuccio PM, Paonita A (2001) Magmatic degassing of multicomponent vapors and assessment of magma depth: application to Vulcano Island (Italy). Earth Planet Sci Lett 193(3–4):467–481

    Article  Google Scholar 

  • Okubo Y, Graf RJ, Hansen RO, Ogawa K, Tsu H (1985) Curie-point depths of the island of Kyushu and surrounding areas, Japan. Geophysics 50:481–494

    Article  Google Scholar 

  • Pasquale V, Verdoya M, Chiozzi P (2003) Heat-flux budget in the southeastern continental margin of the Tyrrhenian basin. Phys Chem Earth 28:407–420

    Article  Google Scholar 

  • Peccerillo A, Frezzotti ML, De Astis G, Ventura G (2006) Modeling the magma plumbing system of Vulcano (Aeolian Islands, Italy) by integrated fluid-inclusion geobarometry, petrology, and geophysics. Geology 34:17–20

    Article  Google Scholar 

  • Pilkington M, Todoeschuck JP (1993) Fractal magnetization of continental crust. Geophys Res Lett 20:627–630

    Article  Google Scholar 

  • Ravat D, Salem A, Abdelaziz AMS, Elawadi E, Morgan P (2011) Probing magnetic bottom and crustal temperature variations along the Red Sea margin of Egypt. Tectonophysics 510:337–344

    Article  Google Scholar 

  • Ravat D, Pignatelli A, Nicolosi I, Chiappini M (2007) A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophys J Int 169:421–434

    Article  Google Scholar 

  • Romagnoli C, Calanchi N, Gabbianelli G, Lanzafame G, Rossi PL (1989) Contributi delle ricerche di geologia marina alla caratterizzazione morfostrutturale ed evolutiva dei complessi vulcanici di Salina, Lipari e Vulcano (Isole Eolie). Boll Gruppo Nazionale Vulcanologia 1989:971–978 (in italian)

    Google Scholar 

  • Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302

    Article  Google Scholar 

  • Tanaka A, Okubo Y, Matsubayashi O (1999) Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306:461–470

    Article  Google Scholar 

  • Tranne CA, Lucchi F, Calanchi N, Lanzafame G, Rossi PL (2002) Geological map of the Island of Lipari (Aeolian Islands), scale 1:10000. University of Bologna and INGV, LAC Firenze

    Google Scholar 

  • Ventura G, Vilardo G, Milano G, Pino NA (1999) Relationships among crustal structure, volcanism and strike–slip tectonics in the Lipari–Vulcano volcanic complex (Aeolian Islands, Southern Tyrrhenian Sea, Italy). Phys Earth Planet Inter 116(1–4):31–52

    Article  Google Scholar 

  • Wang C, Hwang W, Shi Y (1989) Thermal evolution of a rift basin: the Tyrrhenian Sea. J Geophys Res 94(B4):3991–4006

    Article  Google Scholar 

  • Zanella E, Lanza R (1994) Remanent and induced magnetization in the volcanites of Lipari and Vulcano (Aeolian Islands). Annals Geophys 37:1149–1156

    Google Scholar 

  • Zanon V, Frezzotti ML, Peccerillo A (2003) Magmatic feeding system and crustal magma accumulation beneath Vulcano Island (Italy): evidence from CO2 fluid inclusions in quartz xenoliths. J Geophys Res 108:2298–2301. doi:10.1029/2002JB002140

    Article  Google Scholar 

  • Zanon V, Nikogosian IK (2004) Evidence of crustal melting events below the Island of Salina (Aeolian Arc, Southern Italy). Geol Mag 141:525–540

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by INGV. Discussions with colleagues of INGV and Cosenza, Catania, Bologna, Napoli Universities were appreciated. We thank two anonymous reviewers for their thoughtful and perceptive comments and suggestions. We also thank the Associate Editor, Dr. Takao Ohminato, for his comments, suggestions, and editorial handling. All of these reviews improved the logic, the defense of arguments, and the non-expert readability of the paper substantially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ventura.

Additional information

Editorial responsibility: T. Ohminato

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Ritis, R., Ravat, D., Ventura, G. et al. Curie isotherm depth from aeromagnetic data constraining shallow heat source depths in the central Aeolian Ridge (Southern Tyrrhenian Sea, Italy). Bull Volcanol 75, 710 (2013). https://doi.org/10.1007/s00445-013-0710-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0710-9

Keywords

Navigation