Skip to main content

Advertisement

Log in

Emplacement conditions of the c. 1,600-year bp Collier Cone lava flow, Oregon: a LiDAR investigation

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

A long-standing question in lava flow studies has been how to infer emplacement conditions from information preserved in solidified flows. From a hazards perspective, volumetric flux (effusion rate) is the parameter of most interest for open-channel lava flows, as the effusion rate is important for estimating the final flow length, the rate of flow advance, and the eruption duration. The relationship between effusion rate, flow length, and flow advance rate is fairly well constrained for basaltic lava flows, where there are abundant recent examples for calibration. Less is known about flows of intermediate compositions (basaltic andesite to andesite), which are less frequent and where field measurements are limited by the large block sizes and the topographic relief of the flows. Here, we demonstrate ways in which high-resolution digital topography obtained using Light Detection and Ranging (LiDAR) systems can provide access to terrains where field measurements are difficult or impossible to collect. We map blocky lava flow units using LiDAR-generated bare earth digital terrain models (DTMs) of the Collier Cone lava flow in the central Oregon Cascades. We also develop methods using geographic information systems to extract and quantify morphologic features such as channel width, flow width, flow thickness, and slope. Morphometric data are then analyzed to estimate both effusion rates and emplacement times for the lava flow field. Our data indicate that most of the flow outline (which comprises the earliest, and most voluminous, flow unit) can be well explained by an average volumetric flux ∼14–18 m3/s; channel data suggest an average flux ∼3 m3/s for a later, channel-filling, flow unit. When combined with estimates of flow volume, these data suggest that the Collier Cone lava flow was most likely emplaced over a time scale of several months. This example illustrates ways in which high-resolution DTMs can be used to extract and analyze morphologic measurements and how these measurements can be analyzed to estimate emplacement conditions for inaccessible, heavily vegetated, or extraterrestrial lava flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baker BH, McBirney AR (1986) Liquid fractionation. Part III: geochemistry of zoned magmas and the compositional effects of liquid fractionation. J Volcanol Geotherm Res 91(B6):6091–6112

    Google Scholar 

  • Borgia A, Linneman SR (1990) On the evolution of lava flows and the growth of volcanoes. In: Fink JH (ed) Lava flows and domes. Springer, Berlin, pp 208–243

    Chapter  Google Scholar 

  • Borgia A, Linneman S, Spencer D, Morales LD, Andre JB (1983) Dynamics of lava fronts, Arenal Volcano, Costa Rica. J Volcanol Geotherm Res 19:303–329

    Article  Google Scholar 

  • Calvari S, Neri M, Pinkerton H (2002) Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107–123

    Article  Google Scholar 

  • Cashman KV, Kerr RC, Griffiths RW (2006) A laboratory model of surface crust formation and disruption on lava flows through non-uniform channels. Bull Volcanol 68:753–770

    Article  Google Scholar 

  • Cigolini C, Borgia A, Casertano L (1984) Inter-crater activity, aa-block lava, viscosity and flow dynamics: Arenal volcano, Costa Rica. J Volcanol Geotherm Res 20:155–176

    Article  Google Scholar 

  • Coltelli M, Proietti C, Branca S, Marsella M, Andronico D, Lodato L (2007) Analysis of the 2001 lava flow eruption of Mt. Etna from three-dimensional mapping. J Geophys Res 112:F02029. doi:10.1029/2006JF000598

    Article  Google Scholar 

  • Crisci GM, Avolio MV, Behncke B, D’Ambrosio D, Di Gregorio S, Lupiano V, Neri M, Rongo R, Spataro W (2010) Predicting the impact of lava flows at Mount Etna, Italy. J Geophys Res 115:B04203. doi:10.1029/2009JB006431

    Article  Google Scholar 

  • Favalli M, Tarquini S, Fornaciai A, Boscki E (2009a) A new approach to risk assessment of lava flow at Mount Etna. Geology 37:1111–1114. doi:10.1130/G30187A.1

    Article  Google Scholar 

  • Favalli M, Mazzarini F, Pareschi MT, Boscki E (2009b) Topographic control on lava flow paths at Mount Etna, Italy: implications for hazard assessment. J Geophys Res 114:F01019. doi:10.1029/2007JF000918

    Article  Google Scholar 

  • Favalli M, Harris AJL, Fornaciai A, Pareschi MT, Mazzarini F (2010a) The distal segment of Etna's 2001 basaltic lava flow. Bull Volcanol 72:119–127. doi:10.1007/s00445-009-0300-z

    Article  Google Scholar 

  • Favalli M, Fornaciai A, Mazzarini F, Harris A, Neri M, Behncke B, Parescki MT, Tarquini S, Boschi E (2010b) Evolution of an active lava flow field using mutitemporoal LiDAR acquisition. J Geophys Res 115:B11203. doi:10.1029/2010JB007463

    Article  Google Scholar 

  • Favalli M, Tarquini S, Fornaciai A (2011) DOWNFLOW code and LIDAR technology for lava flow analysis and hazard assessment at Mount Etna. Ann Geophys 54:5. doi:10.4401/ag-5339

  • Felpeto A, Arana V, Ortiz R, Astiz M, Garcia A (2001) Assessment and modeling of lava flow hazard on Lanzarote (Canary Islands). Nat Hazard 23:247–257

    Article  Google Scholar 

  • Fenton CR, Poreda RJ, Nash BP, Webb RH, Cerling TE (2004) Flood deposits, Western Grand Canyon, Arizona. J Geol 112:91–110

    Article  Google Scholar 

  • Fenton CR, Webb RH, Cerling TE (2006) Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA. Quat Res 65(2):324–335

    Article  Google Scholar 

  • Fink JH, Griffiths RW (1990) Radial spreading of viscous-gravity currents with solidifying crust. J Fluid Mech 221:485–509

    Article  Google Scholar 

  • Gregg TKP, Fink JH (2000) A laboratory investigation into the effects of slope on morphology. J Volcanol Geotherm Res 96:145–159

    Article  Google Scholar 

  • Griffiths RW, Fink JH (1993) Effects of surface cooling on the spreading of lava flows and domes. J Fluid Mech 252:667–702

    Article  Google Scholar 

  • Griffiths RW, Fink JH (1997) Solidifying Bingham extrusions: a model for the growth of silicic lava domes. J Fluid Mech 347:13–36

    Article  Google Scholar 

  • Griffiths RW, Kerr RC, Cashman KV (2003) Patterns of solidification in channel flows with surface cooling. J Fluid Mech 496:33–62

    Article  Google Scholar 

  • Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow fields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull Volcanol 49:527–540

    Article  Google Scholar 

  • Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63:20–44. doi:10.1007/s004450000120

    Article  Google Scholar 

  • Harris AJL, Rowland SK (2009) Effusion rate controls on lava flow length and the role of heat loss: a review. In: Thordarson T, Self S, Larsen G, Rowland SK, Hoskuldsson A (eds) Studies in volcanology: the legacy of George Walker, Special Publications of IAVCEI, vol 2. Geological Society, London, pp 33–51

    Google Scholar 

  • Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70:1–22. doi:10.1007/s00445-007-0120-y

    Article  Google Scholar 

  • Hofton MA, Malavassi E, Blair JB (2006) Quantifying recent pyroclastic and lava flows at Arenal Volcano, Costa Rica, using medium-footprint lidar. J Geophys Res 33:L21306. doi:10.1029/2006GL027822

    Google Scholar 

  • Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106:351–370

    Article  Google Scholar 

  • Kauahikaua J, Cashman KV, Mattox TN, Heliker CC, Hon KA, Mangan MT, Thornber CR (1998) Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai’i. J Geophys Res 103:27303–27323

    Article  Google Scholar 

  • Kauahikaua J, Sherrod DR, Cashman KV, Heliker C, Hon K, Mattox TN, Johnson JA (2003) Hawaiian lava-flow dynamics during the Pu’u’O’o-Kupaianaha eruption: a tale of two decades. U S Geol Surv Prof Pap 1676:63–88

    Google Scholar 

  • Kerr RC, Lyman AW (2007) Importance of surface crust strength during the flow of the 1988–1990 andesite lava of Lonquimay Volcano, Chile. J Geophys Res 112:B03209. doi:10.1029/2006JB004522

    Article  Google Scholar 

  • Kerr RC, Griffish RW, Cashman KV (2006) Formation of channelized lava flows on an unconfined slope. J Geophys Res 111:B10206. doi:10.1029/2005JB004225

    Article  Google Scholar 

  • Kilburn CRJ (2004) Fracturing as a quantitative indicator of lava flow dynamics. J Volcanol Geotherm Res 132:209–224

    Google Scholar 

  • Lipman PW, Banks NG (1987) Aa flow dynamics, Mauna Loa, 1984. U S Geol Surv Prof Pap 1350:1527–1567

    Google Scholar 

  • Lyman AW, Kerr RC (2006) Effect of surface solidification on the emplacement of lava flows on a slope. J Geophys Res 111:B05206. doi:10.1029/2005JB004133

    Article  Google Scholar 

  • Lyman AW, Koenig E, Fink JH (2004) Predicting yield strengths and effusion rates of lava domes from morphology and underlying topography. J Volcanol Geotherm Res 129:125–138

    Article  Google Scholar 

  • Marsella M, Proietti C, Sonnessa A, Coltelli M, Tommasi P, Bernardo E (2009) The evolution of the Sciara del Fuoco subaerial slope during the 2007 Stromboli eruption: relation between deformation processes and effusive activity. J Volcanol Geotherm Res 182:201–213. doi:10.1016/j.jvolgeores.2009.02.002

    Article  Google Scholar 

  • Mazzarini FMT, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2005) Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data. Geophys Res Lett 32. doi:10.1029/2004GL021815

  • Mazzarini F, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2007) Lava flow identification and aging by means of Lidar intensity: the Mt. Etna case. J Geophys Res 112:B02201. doi:10.1029/2005JB004166

    Article  Google Scholar 

  • Mckay D, Donnelly-Nolan JM, Jensen RA, Champion DE (2009) The post-Mazama northwest rift zone eruption at Newberry Volcano, Oregon in volcanoes to vineyards: geologic field trips through the dynamic landscape. In: O’Connor JE, Dorsey RJ, Madin I (eds), Geological Society of America, Inc. USA field guide. 15: 91–110

  • McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57:331–351

    Article  Google Scholar 

  • Naranjo JA, Sparks RSJ, Stasiuk MV, Moreno MV, Ablay GJ (1992) Morphological, structural and textural variations in the 1988–1990 andesite lava of Lonquimay Volcano, Chile. Geol Mag 129(6):657–678

    Article  Google Scholar 

  • Ogden J, Basher L, McGlone M (1998) Fire, forest regeneration and links with early human habitation: evidence from New Zealand. Ann Bot 81:687–696

    Article  Google Scholar 

  • Perron JT, Kirchner JW, Dietrich WE (2008) Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes. J Geophys Res 113:F04003. doi:10.1029/2007JF000866

    Article  Google Scholar 

  • Pinkerton H, Sparks RSJ (1976) The 1975 subterminal lavas, Mount Etna: a case history of the formation of a compound lava field. J Volcanol Geotherm Res 1:167–182

    Article  Google Scholar 

  • Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56:108–120

    Google Scholar 

  • Pyle DM, Elliott JR (2006) Quantitative morphology, recent evolution, and future activity of the Kemeni Islands volcano, Santorini, Greece. Geosphere 2(5):253–268

    Article  Google Scholar 

  • Riker JM, Cashman KV, Kauahikaua JP, Montierth CM (2009) The length of channelized lava flows: insight from the 1859 eruption of Mauna Loa Volcano, Hawaii. J Volcanol Geotherm Res 183:139–156

    Article  Google Scholar 

  • Roering JJ, Gerber M (2005) Fire and the evolution of steep, soil-mantled landscapes. Geology 33(5):349–352. doi:10.1130/G21260.1

    Article  Google Scholar 

  • Rowland SK, Garbeil H, Harris AJL (2005) Lengths and hazards from channel-fed lava flows on Mauna Loa, Hawai’i, determined from thermal and downslope modeling with FLOWGO. Bull Volcanol 67:634–647

    Article  Google Scholar 

  • Schick JD (1994) Origin of compositional variability of the lavas at Collier Cone, High Cascades, Oregon. Masters thesis, University of Oregon

  • Self S, Keszthelyi L, Thordarson T (1998) The importance of pahoehoe. Annu Rev Earth Planet Sci 26:81–110

    Google Scholar 

  • Sherrod DR, Taylor EM, Ferns ML, Scott WE, Conrey RM, Smith GA (2004) Geologic map of the Bend 30-× 60-Minute Quadrangle, Central Oregon. In Geologic Investigations Series I-2683. USGS. (http://pubs.usgs.gov/imap/i2683/)

  • Shrestha R, Carter W, Slatton C, Dietrich W (2007) “Research-Quality” airborne laser swath mapping: the defining factors. A white paper issued by NCALM. http://www.ncalm.cive.uh.edu/assets/publication_pdf/NCALM_WhitePaper_v1.2.pdf. Accessed 13 Sept 2011

  • Soule SA, Cashman KV, Kauahikaua JP (2004) Examining flow emplacement through the surface morphology of three rapidly emplaced, solidified lava flows, Kilauea Volcano, Hawaii. Bull Volcanol 66:1–14. doi:10.1007/s00445-003-0291-0

    Article  Google Scholar 

  • Tarquini S, Favalli M (2010) Changes of the susceptibility to lava flow invasion induced by morphological modifications of an active volcano: the case of Mount Etna, Italy. Nat Hazard 54:537–546

    Article  Google Scholar 

  • Valentine GA, Keating GN (2007) Eruptive styles and inferences about plumbing systems at Hidden Cone and Little Black Peak scoria cone volcanoes (Nevada, USA). Bull Volcanol 70:105–113. doi:10.1007/s00445-007-0123-8

    Article  Google Scholar 

  • Ventura G, Vilardo G (2008) Emplacement mechanism of gravity flows inferred from high resolution Lidar data: the 1944 Somma-Vesuvius lava flow (Italy). Geomorphology 95:223–235

    Article  Google Scholar 

  • Wadge G, Walker GPL, Guest JE (1975) The output of the Etna volcano. Nature 255:385–387

    Article  Google Scholar 

  • Walker GPL (1971) Compound and simple lava flows and flood basalts. Bull Volcanol 35:579–590

    Article  Google Scholar 

  • Walker GPL (1973) Lengths of lava flows. Phil Trans R Soc A 274:107–118

    Article  Google Scholar 

  • Woolard JW, Colby JD (2002) Spatial characterization, resolution, and volumetric change of coastal dunes using airborne LIDAR: Cape Hatteras, North Carolina. Geomorphology 48:269–287

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Science Foundation NCALM LiDAR seed grant to NDD and NSF EAR 0738894 to KVC. We would like to thank Josh Roering for his intellectual contributions toward the project as a whole and, particularly, for both the GIS and uncertainty analyses. We would also like to thank Ben Mackey for his assistance in the construction of our GIS analyses and Natalia Deligne for her help with sample collection. Finally, we would like to thank Thor Thordarson (editor) and the reviewers (JA Stevenson and anonymous) for their contributions and improvements to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Deardorff.

Additional information

Editorial responsibility: T. Thordarson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. A

Lava flow field polygon with sample locations plotted for all analyzed bulk compositions. Circles are samples collected for this study. Triangles are analyses from J. Schick (1994). Black lines indicate along channel profiles for the western and northwestern lava flow lobes. (JPEG 28 kb)

High resolution image (EPS 502 kb)

Table A

(PDF 544 kb)

Table B1

Measurements of Collier lava flow morphologies from GIS swath boxes (PDF 225 kb)

Table B2

Measurements of Collier lava flow morphologies from GIS swath boxes (PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deardorff, N.D., Cashman, K.V. Emplacement conditions of the c. 1,600-year bp Collier Cone lava flow, Oregon: a LiDAR investigation. Bull Volcanol 74, 2051–2066 (2012). https://doi.org/10.1007/s00445-012-0650-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0650-9

Keywords

Navigation