Skip to main content
Log in

Transient processes in Stromboli’s shallow basaltic system inferred from dolerite and magmatic breccia blocks erupted during the 5 April 2003 paroxysm

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We describe the mineralogy, geochemistry, and mesomicrostructure of fresh subvolcanic blocks erupted during the 5 April 2003 paroxysm of Stromboli (Aeolian Islands, Italy). These blocks represent ∼50 vol.% of the total erupted ejecta and consist of fine- to medium-grained basaltic lithotypes ranging from relatively homogeneous dolerites to strongly or poorly welded magmatic breccias. The breccia components are represented by angular fragments of dolerites entrapped in a matrix of vesiculated (lava-like to scoriae) crystal-rich (CR) basalt. All of the studied blocks are cognates with the CR basalt of the normal Strombolian activity or lavas and they are often coated by a few-centimeter thick layer of crystal-poor (CP) basaltic pumice erupted during the paroxysm. We suggest that they result from the rapid increase of pressure and related subvolcanic rock failure that occurred shortly before the 5 April 2003 explosion, when the uppermost portion of the edifice inflated and suffered brecciation as the result of the sudden rise of the gas-rich CP basalt that triggered the eruption. Dolerites and magmatic matrix of the breccias show major and trace element compositions that match those of the CR basalts erupted during normal Strombolian activity and effusive events at Stromboli volcano. Dolerites consist of (a) phenocrysts normally found in the CR basalts and (b) late-stage magmatic minerals such as sanidine, An60-28 plagioclase, Fe–Mn-rich olivines (Fo68-48), phlogopite, apatite, and opaque mineral pairs (magnetite and ilmenite), most of which are never found both in lava flows and scoriae erupted during the persistent explosive activity that characterizes typical Strombolian behavior. Subvolcanic crystallization of the Stromboli CR magma, leading to slowly cooled equivalents of basalts, could result from transient drainage of the magma from the summit craters to lower levels. Fingering and engulfing of the material that collapsed from the summit crater floor into the shallow basaltic system during the late evening of 28 December 2002 coupled with the short break in the summit persistent explosions between December 2002 and March 2003 permitted the CR magma pockets to solidify as dolerites, which were confined to the uppermost portion of the system and thus not involved in the ongoing flank effusive activity. Crystal size distribution of the basaltic blocks and crystallization of the finer-grained (<0.1 mm) mafic minerals of the dolerites over a time interval of ∼100 days closely agrees with the above interpretation. Vesicle filling (miarolitic cavities) locally found in some dolerites, with minerals deposited as vapor-phase crystallization is a result of continuous gas percolation through the rocks of the uppermost portion of the volcanic system. Poorly welded magmatic breccias formed during syn-eruptive processes of 5 April 2003, when the paroxysm strongly shattered the shallow subvolcanic system and many dolerite fragments were entrapped in the CR magma. In contrast, the high degree of welding between the dolerite clasts and the CR basaltic matrix in the strongly welded magmatic breccias provides a snapshot of subvolcanic intrusions of the CR basalt into the dolerite when, after a 2-month break in activity, CR magmas started to rise again to the summit craters. Blocks similar to these subvolcanic ejecta of 5 April 2003 were also erupted during previous paroxysms (e.g., 1930) suggesting that changes in the usual Strombolian activity (e.g., short breaks in the persistent mild explosions and/or flank effusive activity) lead to transient crystallization of dolerites in the shallow plumbing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aiuppa A, Federico C (2004) Anomalous magmatic degassing prior to the 5th April 2003 paroxysm on Stromboli. Geophys Res Lett 31:L14607 doi:10.1029/2004GL020458

    Article  Google Scholar 

  • Allard P, Carbonnelle J, Métrich N, Loyer H, Zettwoog P (1994) Sulphur output and magma degassing budget of Stromboli volcano. Nature 368:326–330

    Article  Google Scholar 

  • Armienti P, Pareschi MT, Innocenti F, Pompilio M (1994) Effects of magma storage and ascent on the kinetics of crystal growth. The case of 1991–93 Mt. Etna eruption. Contrib Mineral Petrol 115:402–414

    Article  Google Scholar 

  • Armienti P, Francalanci L, Landi P (2007) Textural effects of steady state behaviour of the Stromboli feeding system. J Volcanol Geotherm Res 160:86–98

    Article  Google Scholar 

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1132

    Google Scholar 

  • Barberi F, Rosi M, Sodi A (1993) Volcanic hazard assessment at Stromboli based on review of historical data. Acta Vulcanol 3:173–188

    Google Scholar 

  • Bertagnini A, Landi P (1996) The Secche di Lazzaro Pyroclastics of Stromboli volcano: a phreatomagmatic eruption related to the Sciara del Fuoco sector collapse. Bull Volcanol 58:239–245

    Google Scholar 

  • Bertagnini A, Coltelli M, Landi P, Pompilio M, Rosi M (1999) Violent explosions yield new insights into dynamics of Stromboli volcano. Eos Trans AGU 80(52):633–636

    Article  Google Scholar 

  • Bertagnini A, Métrich N, Landi P, Rosi M (2003) Stromboli volcano (Aeolian Archipelago, Italy): an open window on the deep-feeding system of a steady state basaltic volcano. J Geophys Res 108(ECV 4):1–15

    Google Scholar 

  • Bonaccorso A, Calvari S, Garfì L, Patanè D (2003) Dynamics of the December 2002 flank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations. Geophys Res Lett 30(18):1941 doi:10.1029/2003GL017702

    Article  Google Scholar 

  • Burton M, Allard P, Muré F, La Spina A (2007) Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science 317:227–230

    Article  Google Scholar 

  • Calvari S, Spampinato L, Lodato L, Harris AJL, Patrick AR, Dehn J, Burton MR, Andronico D (2005) Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera. J Geophys Res 110:B02201 doi:10.1029/2004JB003129

    Article  Google Scholar 

  • Calvari S, Spampinato L, Lodato L (2006) The 5 April 2003 vulcanian paroxysmal explosions at Stromboli volcano (Italy) from field observations and thermal data. J Volcanol Geotherm Res 149:160–175

    Article  Google Scholar 

  • Carapezza ML, Inguaggiato S, Brusca L, Longo M (2004) Geochemical precursors of the activity of an open-conduit volcano: the Stromboli 2002–2003 eruptive events. Geophys Res Lett 31:L07620

    Article  Google Scholar 

  • Cashman KV, Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. II: Makaopuhi lava lake. Contrib Mineral Petrol 99:292–305

    Article  Google Scholar 

  • Castro JM, Cashman KV, Manga M (2003) A technique for measuring 3D crystal-size distributions of prismatic microlites in obsidian. Am Mineral 88:1230–1240

    Google Scholar 

  • Chouet B, Dawson P, Ohminato T, Martini M, Saccorotti G, Giudicepietro F, De Luca G, Milana G, Scarpa R (2003) Source mechanisms of explosions at Stromboli Volcano, Italy, determined from moment-tensor inversions of very-long-period data. J Geophys Res 108(ESE 7):1–25

    Google Scholar 

  • Cigolini C, Gervino G, Bonetti R, Conte F, Laiolo M, Coppola D, Manzoni A (2005) Tracking precursors and degassing by radon monitoring during major eruptions at Stromboli Volcano (Aeolian Islands, Italy). Geophys Res Lett 32:L12308 doi:10.1029/2005GL022606

    Article  Google Scholar 

  • Cigolini C, Laiolo M, Bertolino S (2008) Probing Stromboli volcano from the mantle to paroxysmal eruptions. In: Annen C, Zellmer GF (eds) Dynamics of crustal magma transfer, storage and differentiation. Geological Society, London, special publication, vol 304. Geological Society, London, pp 33–70

    Google Scholar 

  • Conte AM, Perinelli C, Trigila R (2006) Cooling kinetics experiments on different Stromboli lavas: effects on crystal morphologies and phases composition. J Volcanol Geotherm Res 155:179–200

    Article  Google Scholar 

  • Corazzato C, Francalanci L, Menna M, Petrone CM, Renzulli A, Tibaldi A, Vezzoli L (2008) What controls sheet intrusion in volcanoes? Structure and petrology of the Stromboli sheet complex, Italy. J Volcanol Geotherm Res 173:26–54

    Article  Google Scholar 

  • D’Auria L, Giudicepietro F, Martini M, Peluso R (2006) Seismological insight into the kinematics of the 5 April 2003 vulcanian explosion at Stromboli volcano (southern Italy). Geophys Res Lett 33:L08308 doi:10.1029/2006gl026018

    Article  Google Scholar 

  • de Hoog JCM, van Bergen MJ (2000) Volatile-induced transport of HFSE, REE, Th and U in arc magmas: evidence from zirconolite-bearing vesicles in potassic lavas of Lewotolo volcano (Indonesia). Contrib Mineral Petrol 139:485–502

    Article  Google Scholar 

  • de Hoog JCM, van Bergen MJ, Jacobs MHG (2005) Vapour-phase crystallization of silica from SiF4-bearing volcanic gases. Annals Geophys 48(4/5):775–785

    Google Scholar 

  • Francalanci L, Tommasini S, Conticelli S, Davies GR (1999) Sr isotope evidence for short magma residence time for the 20th century activity at Stromboli volcano, Italy. Earth Planet Sci Lett 167:61–69

    Article  Google Scholar 

  • Francalanci L, Tommasini S, Conticelli S (2004) The volcanic activity of Stromboli in the 1906–1998 AD period: mineralogical, geochemical and isotope data relevant to understanding of the plumbing system. J Volcanol Geotherm Res 131:179–211

    Article  Google Scholar 

  • Francis P, Oppenheimer C, Stevenson D (1993) Endogenous growth of persistently active volcanoes. Nature 366:554–557

    Article  Google Scholar 

  • Freda C, Baker DR, Scarlato P (2005) Sulfur diffusion in basaltic melts. Geochim Cosmochim Acta 69:5061–5069

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes; IV, a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Giberti G, Jaupart C, Sartoris G (1992) Steady-state operation of Stromboli volcano, Italy: constraints on the feeding system. Bull Volcanol 54:535–541

    Article  Google Scholar 

  • Gillot PY, Keller J (1993) Radiochronological dating of Stromboli. Acta Vulcanol 3:69–77

    Google Scholar 

  • Harris AJL, Ripepe M (2007) Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics. A case study from Stromboli. Chem Erde 67:1–35

    Article  Google Scholar 

  • Harris AJL, Stevenson DS (1997) Magma budgets and steady-state activity of Vulcano and Stromboli. Geophys Res Lett 24 9:1043–1046

    Article  Google Scholar 

  • Harris AJL, Ripepe M, Calvari S, Lodato L, Spampinato L (2008) The 5 April 2003 explosion of Stromboli: timing of eruption dynamics using thermal data. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli Volcano: an integrated study of the 2002–2003 eruption. American Geophysical Union Geophysical Monograph vol. 182. American Geophysical Union, Washington DC, pp 305–316

  • Higgins MD (2000) Measurement of crystal size distribution. Am Mineral 85:1105–1116

    Google Scholar 

  • Hornig-Kjarsgaard I, Keller J, Kobersky U, Stadlbauer E, Francalanci L, Lenhart R (1993) Geology, stratigraphy and volcanological evolution of the island of Stromboli, Aeolian Arc, Italy. Acta Vulcanol 3:21–68

    Google Scholar 

  • Jambon A, Lussiez P, Clocchiatti R, Weisz J, Hernandez J (1992) Olivine growth rates in a tholeiitic basalt; an experimental study of melt inclusions in plagioclase. Chem Geol 96:277–287

    Article  Google Scholar 

  • James MR, Lane SJ, Chouet B, Gilbert JS (2004) Pressure changes associated with the ascent and bursting of gas slug in liquid filled vertical and inclined conduits. J Volcanol Geotherm Res 129:61–82

    Article  Google Scholar 

  • Jaupart C, Vergniolle S (1988) Laboratory models of Hawaiian and Strombolian eruptions. Nature 331:58–60

    Article  Google Scholar 

  • Jaupart C, Vergniolle S (1989) The generation and collapse of a foam layer at the roof of a basaltic magma chamber. J Fluid Mech 203:347–380

    Article  Google Scholar 

  • Kokelaar P, Romagnoli C (1995) Sector collapse, sedimentation and clast population evolution at an active island-arc volcano: Stromboli, Italy. Bull Volcanol 57:240–262

    Google Scholar 

  • Landi P, Métrich N, Bertagnini A, Rosi M (2004) Dynamics of magma mixing and degassing in plagioclase at Stromboli (Aeolian Archipelago, Italy). Contrib Mineral Petrol 147:213–227

    Article  Google Scholar 

  • Landi P, Francalanci L, Pompilio M, Rosi M, Corsaro RA, Petrone CM, Nardini I, Miraglia L (2006) The December 2002–July 2003 effusive event at Stromboli volcano, Italy: insights into the shallow plumbing system by petrochemical studies. J Volcanol Geotherm Res 155:263–284

    Article  Google Scholar 

  • Latypov RM, Dubrovskii MI, Alapieti TT (2001) Graphical analysis of the orthopyroxene–pigeonite–augite–plagioclase equilibrium at liquidus temperatures and low pressure. Am Mineral 86:547–554

    Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks. A classification and glossary of terms, 2nd edn. Cambridge University Press, Cambridge 236 pp

    Google Scholar 

  • Lodato L, Spampinato L, Harris A, Calvari S, Dehn J, Patrick M (2007) The morphology and evolution of the Stromboli 2002–2003 lava flow field: an example of a basaltic flow field emplaced on a steep slope. Bull Volcanol 69:661–679

    Article  Google Scholar 

  • Marchetti E, Ripepe M (2005) Stability of the seismic source during effusive and explosive activity at Stromboli volcano. Geophys Res Lett 32:L03307 doi:10.1029/2004GL021406

    Article  Google Scholar 

  • Marsh DB (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallisation. I. Theory. Contrib Mineral Petrol 99:277–291

    Article  Google Scholar 

  • Mattia M, Rossi M, Guglielmino F, Aloisi M (2004) The shallow plumbing system of Stromboli Island as imaged from 1 Hz instantaneous GPS positions. Geophys Res Lett 31:L24610 doi:10.1029/2004GL021281

    Article  Google Scholar 

  • Mattioli M, Serri G, Salvioli-Mariani E, Renzulli A, Holm PM, Santi P, Venturelli G (2003) Sub-volcanic infiltration and syn-eruptive quenching of liquids in cumulate wall-rocks: the example of the gabbroic nodules of Stromboli (Aeolian Islands, Italy). Mineral Petrol 78:201–230

    Article  Google Scholar 

  • Menna M (2007) La cristallizzazione di magmi basaltici nei sistemi di alimentazione superficiale dei vulcani: dicchi e clasti subvulcanici di Stromboli. Ph.D. thesis, University of Urbino

  • Menna M, Tribaudino M, Renzulli A (2008) Al–Si order and spinodal decomposition texture of a sanidine from igneous clasts of Stromboli (Italy): insights into the timing between the emplacement of a shallow basic sheet intrusion and the eruption of related ejecta. Eur J Mineral 20(2):183–190

    Article  Google Scholar 

  • Métrich N, Bertagnini A, Landi P, Rosi M (2001) Crystallization driven by decompression and water loss at Stromboli volcano (Aeolian Islands, Italy). J Petrol 42:1471–1490

    Article  Google Scholar 

  • Métrich N, Bertagnini A, Landi P, Rosi M (2005) Triggering mechanism at the origin of paroxysms at Stromboli (Aeolian Archipelago, Italy): the 5 April 2003 eruption. Geophys Res Lett 32:L10305 doi:10.1029/2004GL022257

    Article  Google Scholar 

  • Németh K, Cronin SJ (2006) Lava lakes and shallow magmatic feeding systems of mafic volcanoes of ocean island Ambrym, Vanuatu (New Hebrides), South Pacific. In: Lasi II: Physical geology of subvolcanic systems: Laccoliths, Sills and Dykes, Portree, Isle of Skye, Scotland, April 1–3, 2006. Visual Geosciences. doi:10.1007/s10069-006-0002-z

  • Németh K, Cronin SJ (2008) Volcanic craters, pit craters and high-level magma-feeding systems of a mafic island-arc volcano: Ambrym, Vanuatu, South Pacific. In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems. Geological Society, London, special publication, vol 302. Geological Society, London, pp 87–102

    Google Scholar 

  • Neuberg J, Luckett R, Ripepe M, Braun T (1994) Highlights from a seismic broadband array on Stromboli volcano. Geophys Res Lett 21:749–752

    Article  Google Scholar 

  • Pino NA, Ripepe M, Cimini GB (2004) The Stromboli volcano landslides of December 2002: a seismological description. Geophys Res Lett 31:L02605 doi:10.1029/2003GL018385

    Article  Google Scholar 

  • Pioli L, Rosi M, Calvari S, Spampinato L, Renzulli A, Di Roberto A (2008) The eruptive activity of 28 December 2002. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli Volcano: an integrated study of the 2002–2003 eruption. American Geophysical Union Geophysical Monograph vol. 182. American Geophysical Union, Washington DC, pp 105–116

  • Pistolesi M, Rosi M, Pioli L, Renzulli A, Bertagnini A, Andronico D (2008) The paroxysmal event and its deposits. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli Volcano: an integrated study of the 2002–2003 eruption. American Geophysical Union Geophysical Monograph vol. 182. American Geophysical Union, Washington, DC, pp 317–330

  • Ponte G (1916) Lo Stromboli dopo il parossismo del 1915. Rend Acc Naz Lincei 25:373–377

    Google Scholar 

  • Powell M, Powell R (1977) Geothermometry and oxygen barometry using coexisting iron titanium oxides: a reappraisal. Mineral Mag 41:257–263

    Article  Google Scholar 

  • Rasband WS, Bright DS (1995) NIH image: a public domain image processing program for the Macintosh. Microbeam Anal Soc J 4:137–149

    Google Scholar 

  • Renzulli A, Santi P (1997) Sub-volcanic crystallization at Stromboli (Aeolian Islands, southern Italy) preceding the Sciara del Fuoco sector collapse: evidence from monzonite lithic suite. Bull Volcanol 59:10–20

    Article  Google Scholar 

  • Renzulli A, Tribaudino M, Salvioli-Mariani E, Serri G, Holm PM (2003) Cordierite–anorthoclase hornfels xenoliths in Stromboli lavas (Aeolian Islands, Sicily): an example of a fast cooled contact aureole. Eur J Mineral 15:665–679

    Article  Google Scholar 

  • Ripepe M, Harris AJL (2008) Dynamics of the 5 April 2003 explosive paroxysm observed at Stromboli by a near-vent thermal, seismic and infrasonic array. Geophys Res Lett 35:L07306 doi:10.1029/2007GL032533

    Article  Google Scholar 

  • Ripepe M, Ciliberto S, Della Schiava M (2001) Time constrained for modeling source dynamics of volcanic explosions at Stromboli. J Geophys Res 106:8713–8727

    Article  Google Scholar 

  • Ripepe M, Marchetti E, Ulivieri G, Harris A, Dehn J, Burton M, Caltabiano T, Salerno G (2005) Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geology 33:341–344

    Article  Google Scholar 

  • Rittmann A (1931) Der ausbruch des Stromboli am 11 September 1930. Zeits Vulkanol 14:47–77

    Google Scholar 

  • Rosi M, Bertagnini A, Landi P (2000) Onset of the persistent activity at Stromboli volcano (Italy). Bull Volcanol 62:294–300

    Article  Google Scholar 

  • Rosi M, Di Roberto A, Pioli L, Renzulli A, Bertagnini A, Landi P (2004) Slope instability driven by magma intrusion during the December 2002 crisis of Stromboli (Aeolian Islands, Southern Italy). IAVCEI General Assembly Pucon Chile November 2004 Abstracts Symposium 02-B

  • Rosi M, Bertagnini A, Harris AJL, Pioli L, Pistolesi M, Ripepe M (2006) A case history of paroxysmal explosions at Stromboli: timing and dynamics of the April 5, 2003 event. Earth Planet Sci Lett 243:594–606

    Article  Google Scholar 

  • Salvioli-Mariani E, Mattioli M, Renzulli A, Serri G (2002) Silicate melt inclusions in the cumulate minerals of gabbroic nodules from Stromboli volcano (Aeolian Islands, Italy): main components of the fluid phase and crystallization temperatures. Mineral Mag 66:969–984

    Article  Google Scholar 

  • Spencer KJ, Lindsley DH (1981) A solution model for coexisting iron–titanium oxides. Am Mineral 66:1189–1201

    Google Scholar 

  • Stevenson DS, Blake S (1998) Modelling the dynamics and thermodynamics of volatile degassing. Bull Volcanol 60:307–317

    Article  Google Scholar 

  • Tibaldi A (2001) Multiple sector collapses at Stromboli volcano, Italy: how they work. Bull Volcanol 63:112–125

    Article  Google Scholar 

  • Tinti S, Pagnoni F, Zaniboni F, Bortolucci E (2003) Tsunami generation in Stromboli island and impact on the south-east Tyrrhenian coasts. Nat Hazards Earth Sys Sci 3:299–309

    Article  Google Scholar 

  • Tommasi P, Chiocci F, Marsella M, Coltelli M, Pompilio M (2003) Preliminary analysis of the December 2002 instability phenomena at Stromboli volcano. International workshop on Occurrence and Mechanism of flows in Natural Slopes and Earth Fills. Sorrento 14–16 May 2003

  • Vaggelli G, Francalanci L, Ruggieri G, Testi S (2003) Persistent polybaric rests of calc-alkaline magmas at Stromboli volcano, Italy: pressure data from fluid inclusions in restitic quartzite nodules. Bull Volcanol 65:385–404

    Article  Google Scholar 

  • Wright TL, Okamura RT (1977) Cooling and crystallization of tholeiitic basalt, 1965 Makaopuhi Lava Lake, Hawai’i. U.S. Geol Surv Prof Pap 1004, 78 pp

  • Wright TL, Peck DL, Shaw HR (1976) Kilauea lava lakes: natural laboratories for study of cooling, crystallization, and differentiation of basaltic magma. In: Sutton GH, Manghnani MH, Moberly R (eds) The geophysics of the Pacific Ocean basin and its margin. American Geophysical Union Geophysical Monograph, vol 19. American Geophysical Union, Washington, DC, pp 375–390

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and Department of Civil Protection (DPC) in the framework of the Volcanological Projects 2004–2006 (Project: Monitoring and research activity at Stromboli and Panarea; RU V2/18) and 2007–2009 (Project: Paroxysms; RU V2/11). The paper benefited greatly from critical reviews of J.F. Larsen (University of Alaska) and M. Rosi (University of Pisa). Associate Editor (A. Harris) is gratefully thanked for his constructive criticism and editorial issues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Renzulli.

Additional information

Editorial responsibility: A. Harris

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renzulli, A., Del Moro, S., Menna, M. et al. Transient processes in Stromboli’s shallow basaltic system inferred from dolerite and magmatic breccia blocks erupted during the 5 April 2003 paroxysm. Bull Volcanol 71, 795–813 (2009). https://doi.org/10.1007/s00445-009-0265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-009-0265-y

Keywords

Navigation