Skip to main content
Log in

Competition with stone crabs drives juvenile spiny lobster abundance and distribution

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Interspecific competition is assumed to have a strong influence on the population dynamics of competing species, but is not easily demonstrated for mobile species in the wild. In the Florida Keys (USA), anecdotal observations have long pointed to an inverse relationship in abundance of two large decapod crustaceans found co-occurring in hard-bottom habitat, the stone crab Menippe mercenaria and the Caribbean spiny lobster Panulirus argus. We used them to explicitly test whether competition for a renewable resource (shelter) can drive the abundance and distribution of the inferior competitor. We first explored this relationship in shelter competition mesocosm experiments to determine the competitively dominant species. Results showed that stone crabs are clearly the dominant competitors regardless of the number of lobsters present, the presence of co-sheltering species such as the spider crab, Damithrax spinosissimus, or the order of introduction of competitors into the mesocosm. We also found that lobsters use chemical cues from stone crabs to detect and avoid them. We then tested the ramifications of this competitive dominance in the field by manipulating stone crab abundance and then tracking the abundance and distribution of spiny lobsters through time. Increased stone crab abundance immediately resulted in decreased lobster abundance and increased aggregation. The opposite occurred on sites where stone crabs were removed. When we stopped removing stone crabs from these sites, they soon returned and lobster abundance decreased. This study explicitly demonstrated that interspecific competition can drive population dynamics between these species, and ultimately, community composition in these shallow water habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alley TR (1982) Competition theory, evolution, and the concept of an ecological niche. Acta Biotheor 31:165–179

    Article  CAS  PubMed  Google Scholar 

  • Anderson JR, Behringer DC (2013) Spatial dynamics in the social lobster Panulirus argus in response to diseased conspecifics. Mar Ecol-Prog Ser 474:191–200

    Article  Google Scholar 

  • Anderson BJ, Akcakaya HR, Araujo MB, Fordam DA, Martinez-Meyer E, Thuiller W, Brook BW (2009) Dynamics of range margins for metapopulations under climate change. Proc R Soc B 276:1415–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andree SW (1981) Locomotory activity patterns and food items of benthic postlarval spiny lobsters, Panulirus argus. M.S. Thesis, Florida State University, Tallahassee, Florida

  • Beck MW (1995) Size-specific shelter limitation in stone crabs: a test of the demographic bottleneck hypothesis. Ecology 76(3):968–980

    Article  Google Scholar 

  • Beck MW (1997) A test of the generality of the effects of shelter bottlenecks in four stone crab populations. Ecology 78(8):2487–2503

    Article  Google Scholar 

  • Behringer DB, Butler MJ IV (2010) Disease avoidance influences shelter use and predation in Caribbean spiny lobster. Behav Ecol Sociobiol 64:747–755

    Article  Google Scholar 

  • Behringer DC, Butler MJ IV, Shields JD (2006) Ecology: avoidance of disease in social lobsters. Nature 441:421

    Article  CAS  PubMed  Google Scholar 

  • Berger DK, Butler MJ IV (2001) Octopuses influence den selection by juvenile Caribbean spiny lobster. Mar Freshw Res 52:1049–1053

    Article  Google Scholar 

  • Berger KM, Gese EM (2007) Does interference competition with wolves limit the distribution and abundance of coyotes? J Anim Ecol 76:1075–1085

    Article  PubMed  Google Scholar 

  • Blank GS, Figler MH (1996) Interspecific shelter competition between the sympatric crayfish species Procambarus clarkia (Girard) and Procambarus zonangulus (Hobbs and Hobbs). J Crust Biol 16(2):300–309

    Article  Google Scholar 

  • Butler MJ IV, Hunt JH, Herrnkind WF, Childress MJ, Bertelsen R, Sharp W, Matthews T, Field JM, Marshall HG (1995) Cascading disturbances in Florida Bay, USA: cyanobacteria blooms, sponge mortality, and implications for juvenile spiny lobsters Panulirus argus. Mar Ecol Prog Ser 129:119–125

    Article  Google Scholar 

  • Butler IV MJ, Herrnkind WF (2000) Puerulus and juvenile ecology. In: Phillips BF, Cobb JS, Kittaka J (eds) Spiny Lobster Management, 2nd edn. Blackwell Scientific Press, Oxford, pp 276–301

  • Butler MJ IV, MacDiarmid AB, Booth JD (1999) The cause and consequence on ontogenetic changes in social aggregation in New Zealand spiny lobsters. Mar Ecol Prog Ser 188:179–191

    Article  Google Scholar 

  • Butler MJ IV, Paris CB, Goldstein JS, Matsuda H, Cowen RK (2011) Behavior constrains the dispersal of long-lived spiny lobster larvae. Mar Ecol Prog Ser 422:223–237

    Article  Google Scholar 

  • Capelli GM, Munjal BJ (1982) Aggressive interactions and resource competition in relation to species displacement among crayfish of the genus Orconectes. J Crust Biol 2(4):486–492

    Article  Google Scholar 

  • Case TJ, Gilpin ME (1974) Interference competition and niche theory. Proc Natl Acad Sci USA 71(8):3073–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Childress MJ, Herrnkind WF (1997) Den sharing by juvenile Caribbean spiny lobsters (Panulirus argus) in nursery habitat: cooperation or coincidence? Mar Freshw Res 48:751–758

    Article  Google Scholar 

  • Childress MJ, Herrnkind WF (2001) The guide effect influence on the gregariousness of juvenile Caribbean spiny lobsters. Anim Behav 62:465–472

    Article  Google Scholar 

  • Codella SG Jr, Raffa KF (1995) Contributions of female oviposition patterns and larval behavior to group defense in conifer sawflies (Hymenptera: Diprionidae). Oecologia 103:24–33

    Article  PubMed  Google Scholar 

  • Connell JH (1961) The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42:710–723

    Article  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175

    Article  Google Scholar 

  • Eggleston DB, Lipcius RN (1992) Shelter selection by spiny lobster under variable predation risk, social conditions, and shelter size. Ecology 73(3):992–1011

    Article  Google Scholar 

  • Fletcher RJ (2007) Species interactions and population density mediate the use of social cues for habitat selection. J Anim Ecol 76:598–606

    Article  PubMed  Google Scholar 

  • Gustafsson L (1987) Interspecific competition lowers fitness in collard flycatchers Ficedula albicollis: an experimental demonstration. Ecology 68(2):291–296

    Article  Google Scholar 

  • Hampe A (2004) Bioclimate envelope models? What they detect and what they hide. Global Ecol Biogeogr 13:469–476

    Article  Google Scholar 

  • Hobbs JPA, Munday PL (2004) Intraspecific competition controls spatial distribution and social organization of the coral dwelling goby Gobiodon histro. Mar Ecol Prog Ser 278:253–259

    Article  Google Scholar 

  • Holbrook SJ, Schmitt RJ (2002) Competition for shelter space causes density-dependent predation mortality in damselfishes. Ecology 83:2855–2868

    Article  Google Scholar 

  • Holt RD, Barfield M (2011) Theoretical perspectives on the statics and dynamics of species borders in patchy environments. Am Nat 178(4):6–25

    Article  Google Scholar 

  • Horner AJ, Nickles SP, Weissburg MJ, Derby CD (2006) Source and specificity of chemical cues mediating shelter preference of Caribbean spiny lobsters (Panulirus argus). Biol Bull 211:128–139

    Article  PubMed  Google Scholar 

  • Kanciruk P, Herrnkind W (1978) Mass migration of spiny lobster, Panulirus argus (Crustacean: Palinuridae): behavior and environmental correlates. Bull Mar Sci 28(4):601–623

    Google Scholar 

  • Kough AS, Paris CB, Butler MJ IV (2013) Larval connectivity and the international management of fisheries. PLoS ONE 8(6):e64970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuefler D, Avger T, Fryxell JM (2013) Density- and resource-dependent movement characteristics in a rotifer. Funct Ecol 27:323–328

    Article  Google Scholar 

  • Langkilde T, Shine R (2004) Competing for crevices: interspecific conflict influences retreat-site selection in montane lizards. Oecologia 140(4):684–691

    Article  PubMed  Google Scholar 

  • Lavalli KL, Herrnkind WF (2001) Collective defense by spiny lobster (Panulirus argus) against triggerfish (Balistes capriscus): effects of number of attackers and defenders. New Zeal J Mar Freshw Res 43(1):15–28

    Article  Google Scholar 

  • Lavalli KL, Herrnkind WF (2009) Defensive strategies of Caribbean spiny lobsters: effects of group size and predator group size. New Zeal J Mar Freshw Res 43(1):15–28

    Article  Google Scholar 

  • Liesenjohann T, Palme R, Eccard JA (2013) Differential behavioral and endocrine responses of common voles (Microtus arvalis) to nest predators and resource competitors. BMC Ecol 13:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindberg WJ, Frazer TK, Stanton GR (1990) Population effects of refuge dispersion for adult stone crabs (Xanthidae, Menippe). Mar Ecol Prog Ser 66:239–249

    Article  Google Scholar 

  • MacArthur R, MacArthur J (1961) On bird species diversity. Ecology 42:594–598

    Article  Google Scholar 

  • Martin PR, Martin TE (2001) Ecological and fitness consequences of species coexistence: a removal experiment with wood warblers. Ecology 82(1):189–206

    Article  Google Scholar 

  • Marx JM, Herrnkind WF (1985) Macroalgae (Rhodophyta: Laurencia spp.) as habitat for juvenile spiny lobster, Panulirus argus. Bull Mar Sci 36:423–431

    Google Scholar 

  • Mintz JD, Lipcius RN, Eggleston DB, Seebo MS (1994) Survival of juvenile Caribbean spiny lobster: effects of shelter size, geographic location and conspecific abundance. Mar Ecol Prog Ser 112:255–266

    Article  Google Scholar 

  • Moss J, Behringer DC, Shields JD, Baeza A, Aguilar-Perera A, Bush PG, Dromer C, Herrera- Moreno A, Gittens L, Matthews TR, McCord MR, Scharer MT, Reynal L, Truelove N, Butler MJ (2013) Distribution, prevalence, and genetic analysis of Panulirus argus virus 1 (PaV1) from the Caribbean Sea. Dis Aquat Org 104:129–140

    Article  PubMed  Google Scholar 

  • O'Neill DJ, Cobb JS (1979) Some factors influencing the outcome of shelter competition in lobsters (Homarus americanus). Mar Behav Phy 6(1):33–45

    Article  Google Scholar 

  • Park T (1954) Experimental studies of interspecies competition. II. Temperature, humidity, and competition in two species of Tribolium. Physiol Zool 27:177–238

    Article  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimatic envelope models useful? Global Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Porter H (1960) Zoeal stages of the stone crab Menippe mercenaria (Say). Chesap Sci 1(3–4):168–171

    Article  Google Scholar 

  • Ratchford SG, Eggleston DB (1998) Size- and scale-dependent chemical attraction contribute to an ontogenetic shift in sociality. Anim Behav 56:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Robertson DR (1996) Interspecific competition controls abundance and habitat use of territorial Caribbean damselfishes. Ecology 77(3):885–899

    Article  Google Scholar 

  • Shields JD, Behringer DC (2004) A new pathogenic virus in the Caribbean spiny lobster Panulirus argus from the Florida Keys. Dis Aquat Org 59:109–118

    Article  PubMed  Google Scholar 

  • Shulman MJ (1984) Resource limitation and recruitment patterns in a coral reef fish assemblage. J Exp Mar Biol Ecol 74:85–109

    Article  Google Scholar 

  • Spicer JI, Gaston KJ (1999) Physiological diversity and its ecological implications. Blackwell Science, Oxford

    Google Scholar 

  • Stentiford GD, Shields JD (2005) A review of the parasitic dinoflagellates Hematodinium species and Hematodinium-like infections in marine crustaceans. Dis Aquat Organ 66:47–70

    Article  PubMed  Google Scholar 

  • Tilman D (1994) Competition and biodiversity in spatially structured habitats. Ecology 75(1):2–16

    Article  Google Scholar 

  • Usio N, Konishi M, Nakano S (2001) Species displacement between an introduced and a ‘vulnerable’ crayfish: the role of aggressive interactions and shelter competition. Biol Invasions 3:179–185

    Article  Google Scholar 

  • Wang D (1975) Agonistic and shell fighting behaviors of two sympatric species of hermit crabs. M.S. thesis, University of Delaware, Lewes

  • Wilber DH (1988) The influence of sexual selection and predation on the mating and postcopulatory guarding. Behav Ecol Sociobiol 24(6):445–451

    Article  Google Scholar 

  • Zimmer-Faust RK, Tyre JE, Case JF (1985) Chemical attraction causing aggregation in the spiny lobster, Panulirus interruptus (Randall), and its probable ecological significance. Biol Bull 169:106–118

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Cleveland, J. Anderson, R. Squibb, B. Gutzler, C. Butler, J. Butler, and J. Spadaro for field and laboratory assistance. J. Hart was partially supported by a graduate research assistantship from the University of Florida School of Natural Resources and the Environment. This research was supported by NOAA Florida Sea Grant College Program grant R/LR-B-65 and National Science Foundation grant OCE-0928398 to DCB.

Author contribution statement

DCB and JEH conceived and designed the study, JEH conducted the experiments, and DCB and JEH wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald C. Behringer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Communicated by Pete Peterson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behringer, D.C., Hart, J.E. Competition with stone crabs drives juvenile spiny lobster abundance and distribution. Oecologia 184, 205–218 (2017). https://doi.org/10.1007/s00442-017-3844-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-017-3844-1

Keywords

Navigation