Skip to main content

Advertisement

Log in

Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Understanding the role of biodiversity (B) in maintaining ecosystem function (EF) is a foundational scientific goal with applications for resource management and conservation. Two main hypotheses have emerged that address B–EF relationships: niche complementarity (NC) and the mass-ratio (MR) effect. We tested the relative importance of these hypotheses in a subtropical old-growth forest on the island nation of Taiwan for two EFs: aboveground biomass (ABG) and coarse woody productivity (CWP). Functional dispersion (FDis) of eight plant functional traits was used to evaluate complementarity of resource use. Under the NC hypothesis, EF will be positively correlated with FDis. Under the MR hypothesis, EF will be negatively correlated with FDis and will be significantly influenced by community-weighted mean (CWM) trait values. We used path analysis to assess how these two processes (NC and MR) directly influence EF and may contribute indirectly to EF via their influence on canopy packing (stem density). Our results indicate that decreasing functional diversity and a significant influence of CWM traits were linked to increasing AGB for all eight traits in this forest supporting the MR hypothesis. Interestingly, CWP was primarily influenced by NC and MR indirectly via their influence on canopy packing. Maximum height explained more of the variation in both AGB and CWP than any of the other plant functional traits. Together, our results suggest that multiple mechanisms operate simultaneously to influence EF, and understanding their relative importance will help to elucidate the role of biodiversity in maintaining ecosystem function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barrufol M, Schmid B, Bruelheide H, Chi X, Hector A, Ma K, Michalski S, Tang Z, Niklaus PA (2013) Biodiversity promotes tree growth during succession in subtropical forest. PLoS One 8:e81246. doi:10.1371/journal.pone.0081246

    Article  PubMed  PubMed Central  Google Scholar 

  • Bureau of Aborignial Affairs (1911) Report on the control of aborigines in Formosa, Taihoku (Taipei)

  • Burnham KP, Anderson D (2004) Multimodel inference—understanding AIC and BIC in model selection. Sociol Method Res 33:261–304. doi:10.1177/0049124104268644

    Article  Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc Natl Acad Sci USA 104:18123–18128. doi:10.1073/pnas.0709069104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Folster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riera B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99. doi:10.1007/s00442-005-0100-x

    Article  CAS  PubMed  Google Scholar 

  • Chi CH, McEwan RW, Chang CT, Zheng CY, Yang ZJ, Chiang JM, Lin TC (2015) Typhoon disturbance mediates elevational patterns of forest structure, but not species diversity, in humid monsoon Asia. Ecosystems 18:1410–1423. doi:10.1007/s10021-015-9908-3

    Article  CAS  Google Scholar 

  • Chisholm RA, Muller-Landau HC, Abdul Rahman K, Bebber DP, Bin Y, Bohlman SA, Bourg NA, Brinks J, Bunyavejchewin S, Butt N, Cao HL, Cao M, Cardenas D, Chang LW, Chiang JM, Chuyong G, Condit R, Dattaraja HS, Davis S, Duque A, Fletcher C, Gunatilleke CVS, Gunatilleke N, Hao ZQ, Harrison RD, Howe R, Hsieh CF, Hubbell SP, Itoh A, Kenfack D, Kiratiprayoon S, Larson AJ, Lian JY, Lin DM, Liu HF, Lutz JA, Ma K, Malhi Y, McMahon S, McShea W, Meegaskumbura M, Razman SM, Morecroft MD, Nytch CJ, Oliveira A, Parker GG, Pulla S, Punchi-Manage R, Romero-Saltos H, Sang WG, Schurman J, Su SH, Sukumar R, Sun IF, Suresh HS, Tan S, Thomas D, Thomas S, Thompson J, Valencia R, Wolf A, Yap S, Ye WH, Yuan ZQ, Zimmerman JK (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. J Ecol 101:1214–1224. doi:10.1111/1365-2745.12132

    Article  Google Scholar 

  • Condit R (1998) Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Springer, Berlin

    Book  Google Scholar 

  • Conti G, Díaz S (2013) Plant functional diversity and carbon storage—an empirical test in semi-arid forest ecosystems. J Ecol 101:18–28. doi:10.1111/1365-2745.12012

    Article  CAS  Google Scholar 

  • Costello MJ, May RM, Stork NE (2013) Can we name Earth’s species before they go extinct? Science 339:413–416. doi:10.1126/science.1230318

    Article  CAS  PubMed  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Díaz S, Cabido M (2001) Vive la differérence: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655. doi:10.1016/S0169-5347(01)02283-2

    Article  Google Scholar 

  • Díaz S, Lavorel S, de Bello F, Quetier F, Grigulis K, Robson M (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA 104:20684–20689. doi:10.1073/pnas.0704716104

    Article  PubMed  PubMed Central  Google Scholar 

  • Diggle PJ, Ribeiro PJ Jr (2007) Model based geostatistics. Springer, Berlin

    Google Scholar 

  • Fargione J, Tilman D, Dybzinsky R, Hille Ris Lambers J, Clark C, Harpole WS, Knops JMH, Reich PB, Loreau M (2007) From selection to complementarity: shifts in the causes of biodiversity–productivity relationships in a long-term biodiversity experiment. Proc R Soc B Biol Sci 274:871–876. doi:10.1098/rspb.2006.0351

    Article  Google Scholar 

  • Finegan B, Pena-Claros M, de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreno-Rocabado G, Casanoves F, Diaz S, Velepucha PE, Fernandez F, Licona JC, Lorenzo L, Negret BS, Vaz M, Poorter L (2015) Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J Ecol 103:191–201. doi:10.1111/1365-2745.12346

    Article  Google Scholar 

  • Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debusseche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630–2637. doi:10.1890/03-0799

    Article  Google Scholar 

  • Grace JB, Bollen KA (2005) Interpreting the results from multiple regression and structural equation models. B Ecol Soc Am 86:283–295

    Article  Google Scholar 

  • Grace JB, Anderson TM, Seabloom EW, Borer ET, Adler PB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, Pärtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JMH, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529:390–393. doi:10.1038/nature16524

    Article  CAS  PubMed  Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910. doi:10.1046/j.1365-2745.1998.00306.x

    Article  Google Scholar 

  • Hooper DU, Vitousek PM (1997) The effects of composition and diversity on ecosystem processes. Science 277:1302–1305. doi:10.1126/science.277.5330.1302

    Article  CAS  Google Scholar 

  • Hooper DU, Chapin FS, Ewei JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35. doi:10.1890/04-0922

    Article  Google Scholar 

  • Huang SC, Lin YC, Liu K, Chen C (2011) Microplate method for plant total nitrogen and phosphorus analysis. Taiwan J Agr Chem Food Sci 49:19–25

    CAS  Google Scholar 

  • Iida Y, Kohyama TS, Swenson NG, Su SH, Chen CT, Chiang JM, Sun IF (2014) Linking functional traits and demographic rates in a subtropical tree community: the importance of size dependency. J Ecol 102:641–650. doi:10.1111/1365-2745.12221

    Article  Google Scholar 

  • Jucker T, Bouriaud O, Coomes DA (2015) Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct Ecol 29:1078–1086. doi:10.1111/1365-2435.12428

    Article  Google Scholar 

  • Kline RB (2010) Principles and practice of structural equation modeling. Guilford, New York

    Google Scholar 

  • Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Penuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun IF, Ståhl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmerman JK, Zimmermann NE, Westoby M (2016) Plant functional traits have globally consistent effects on competition. Nature 529:204–207. doi:10.1038/nature16476

    Article  CAS  PubMed  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305. doi:10.1890/08-2244.1

    Article  PubMed  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379. doi:10.1890/06-2057.1

    Article  PubMed  Google Scholar 

  • Legendre P, Dale MRT, Fortin MJ, Gurevitch J, Hohn M, Myers D (2002) The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25:601–615. doi:10.1034/j.1600-0587.2002.250508.x

    Article  Google Scholar 

  • Li R, Zhu S, Chen HYH, John R, Zhou G, Zhang D, Zhang Q, Ye Q (2015) Are functional traits a good predictor of global change impacts on tree species abundance dynamics in a subtropical forest? Ecol Lett 18:1181–1189. doi:10.1111/ele.12497

    Article  Google Scholar 

  • Lin TC, Hamburg SP, Lin KC, Wang LJ, Chang CT, Hsia YJ, Vadeboncoeur MA, McMullen CMM, Liu CP (2011) Typhoon disturbance and forest dynamics: lessons from a northwest Pacific subtropical forest. Ecosystems 14:127–143. doi:10.1007/s10021-010-9399-1

    Article  CAS  Google Scholar 

  • Loreau M (2004) Does functional redundancy exist? Oikos 104:606–611. doi:10.1111/j.0030-1299.2004.12685.x

    Article  Google Scholar 

  • Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118. doi:10.1111/j.0030-1299.2005.13886.x

    Article  Google Scholar 

  • McCune B, Grace J (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach

    Google Scholar 

  • McEwan RW, Lin YC, Sun IF, Hsieh CF, Su SH, Chang LW, Song GZM, Wang HH, Hwong JL, Lin KC, Yang KC, Chiang JM (2011a) Topographic and biotic regulation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan. Forest Ecol Manag 262:1817–1825. doi:10.1016/j.foreco.2011.07.028

    Article  Google Scholar 

  • McEwan RW, Dyer JM, Pederson N (2011b) Multiple interacting ecosystem drivers: toward an encompassing hypothesis of oak forest dynamics across eastern North America. Ecography 34:244–256. doi:10.1111/j.1600-0587.2010.06390.x

    Article  Google Scholar 

  • Mokany K, Ash J, Roxburgh S (2008) Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland. J Ecol 96:884–893. doi:10.1111/j.1365-2745.2008.01395.x

    Article  Google Scholar 

  • Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011) Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecol Lett 14:1211–1219. doi:10.1111/j.1461-0248.2011.01691.x

    Article  PubMed  Google Scholar 

  • Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. doi:10.1126/science.1201609

    Article  CAS  PubMed  Google Scholar 

  • Paquette A, Messier C (2011) The effects of biodiversity on tree productivity: from temperate to boreal forests. Global Ecol Biogeogr 20:170–180. doi:10.1111/j.1466-8238.2010.00592.x

    Article  Google Scholar 

  • Potvin C, Mancilla L, Buchmann N, Monteza J, Moore T, Murphy M, Oelmann Y, Scherer-Lorenzen M, Turner BL, Wilcke W, Zeugin F, Wolf S (2011) An ecosystem approach to biodiversity effects: carbon pools in a tropical tree plantation. Forest Ecol Manag 261:1614–1624. doi:10.1016/j.foreco.2010.11.015

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 15 Aug 2014

  • Reiss J, Bridle JR, Montoya JM, Woodward G (2009) Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol 24:505–514. doi:10.1016/j.tree.2009.03.018

    Article  PubMed  Google Scholar 

  • Réjou-Méchain M, Muller-Landau HC, Detto M, Thomas SC, Le Toan T, Saatchi SS, Barreto-Silva JS, Bourg NA, Bunyavejchewin S, Butt N, Brockelman WY, Cao M, Cardenas D, Chiang JM, Chuyong GB, Clay K, Condit R, Dattaraja HS, Davies SJ, Duque A, Esufali S, Ewango C, Fernando RHS, Fletcher CD, Gunatilleke IAUN, Hao Z, Harms KE, Hart TB, Herault B, Howe RW, Hubbell SP, Johnson DJ, Kenfack D, Larson AJ, Lin L, Lin Y, Lutz JA, Makana JR, Malhi Y, Marthews TR, McEwan RW, McMahon SM, McShea WJ, Muscarella R, Nathalang A, Noor NSM, Nytch CJ, Oliveira AA, Phillips RP, Pongpattananurak N, Punchi-Manage R, Salim R, Schurman J, Sukumar R, Suresh HS, Suwanvecho U, Thomas DW, Thompson J, Uriarte M, Valencia R, Vicentini A, Wolf AT, Yap S, Yuan Z, Zartman CE, Zimmerman JK, Chave J (2014) Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences 11:6827–6840. doi:10.5194/bg-11-6827-2014

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, Lenton TM, Scheffer M, Folke C, Schellnhuber HJ, Nykvist B, de Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sorlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley JA (2009) A safe operating space for humanity. Nature 461:472–475. doi:10.1038/461472a

    Article  PubMed  Google Scholar 

  • Rosseel Y (2012) Lavaan: an R package for structural equation modeling. J Stat Softw 48:1–36

    Article  Google Scholar 

  • Ruiz-Jaen MC, Potvin C (2011) Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol 189:978–987. doi:10.1111/j.1469-8137.2010.03501.x

    Article  PubMed  Google Scholar 

  • Shen GC, He FL, Waagepetersen R, Sun IF, Hao ZQ, Chen ZS, Yu MJ (2013) Quantifying effects of habitat heterogeneity and other clustering processes on spatial distributions of tree species. Ecology 94:2436–2443. doi:10.1890/12-1983.1

    Article  PubMed  Google Scholar 

  • Spasojevic MJ, Suding KN (2012) Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J Ecol 100:652–661. doi:10.1111/j.1365-2745.2011.01945.x

    Article  Google Scholar 

  • Su SH, Chang-Yang CH, Lu CL, Tsui CC, Lin TT, Lin CL, Chiou WL, Kuan LH, Chen ZS, Hsieh CF (2007) Fushan subtropical forest dynamics plot: tree species characteristics and distribution patterns. Taiwan Forestry Research Institute, Taipei

    Google Scholar 

  • Tilman D (1997) Distinguishing between the effects of species diversity and species composition. Oikos 80:185. doi:10.2307/3546532

    Article  Google Scholar 

  • Tilman D (1999) The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474.

    Google Scholar 

  • Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annu Rev Ecol Evol S 45:471–493. doi:10.1146/annurev-ecolsys-120213-091917

    Article  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301. doi:10.1890/07-1206.1

    Article  PubMed  Google Scholar 

  • Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Diaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, Salvador CM, Zanne AE (2010) Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91:3664–3674. doi:10.1890/09-2335.1

    Article  PubMed  Google Scholar 

  • Yao AW, Chiang JM, McEwan RW, Lin TC (2015) The effect of typhoon-related defoliation on the ecology of gap dynamics in a subtropical rainforest of Taiwan. J Veg Sci 26:145–154. doi:10.1111/jvs.12217

    Article  Google Scholar 

  • Zhang Y, Chen HYH (2015) Individual size inequality links forest diversity and above-ground biomass. J Ecol 103:1245–1252. doi:10.1111/1365-2745.12425

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the National Science Council of Taiwan (102-2313-B-029-003-MY3, 98-2313-B-029-001-MY3 to J-MC), the US National Science Foundation (DEB-1046113), and the Smithsonian Center for Tropical Forest Science Research Grants Program (to RWM). The establishment and two tree censuses of the Fushan plot were financially supported by the Council of Agriculture and the National Science Council of Taiwan. We gratefully acknowledge Ryan Chisholm, John Dwyer, and two anonymous reviewers for their comments that improved the previous versions of this manuscript. JMC wants to thank his father, Mr. Tien-Chin Chiang, for the long-time support of his academic career. He was actively involved in the discussion of this project from a farmer’s point-of-view before he passed away on the 6th of March, 2016. None of the authors has any conflict of interest.

Author contribution statement

JMC conceived and formulated the research idea. JMC, MJS, HCM, YL, and NGS developed the analytical procedures. MJS conducted path analysis. IFS and SHS maintain the study plot and census data. JMC, IFS, ZSC, and CTC provided functional trait and soil data. JMC and RWM wrote the first manuscript draft and others commented and contributed to the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Min Chiang.

Additional information

Communicated by John Dwyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 517 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, JM., Spasojevic, M.J., Muller-Landau, H.C. et al. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840 (2016). https://doi.org/10.1007/s00442-016-3717-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-016-3717-z

Keywords

Navigation